Math Problem Statement

400.0 mL dari 3.75 mM Fe2+ dititrasi dengan 20.0 mM MnO4-  pada pH 0 dalam 1 M H2SO4. Hitung potensialsel vs elektroda standard kalomel pada volume titran 13 ml, 15 ml, dan 17 ml.

Data:          Fe3+ + e <--> Fe2+ Eo= 0,68 V dalam 1 M H2SO4

       MnO4-  + 8H+ + 5e <--> mn2+ +4H2O Eo=1,507V 

E kalomel = 0,241 V

Solution

We are dealing with a redox titration problem involving the titration of Fe²⁺ by MnO₄⁻ in acidic conditions, specifically in 1 M H₂SO₄ at pH 0. The goal is to calculate the cell potential at specific volumes of titrant added: 13 mL, 15 mL, and 17 mL.

To solve this, we'll break it down into the following steps:

  1. Identify the Redox Reaction: 5Fe2++MnO4+8H+5Fe3++Mn2++4H2O5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O This is a 5:1 stoichiometric reaction between Fe²⁺ and MnO₄⁻.

  2. Determine the Initial Number of Moles of Fe²⁺ and MnO₄⁻:

    • The initial concentration of Fe²⁺ is 3.75 mM and the volume is 400.0 mL. moles of Fe2+=3.75×103mol/L×0.4000L=1.5×103mol\text{moles of Fe}^{2+} = 3.75 \times 10^{-3} \, \text{mol/L} \times 0.4000 \, \text{L} = 1.5 \times 10^{-3} \, \text{mol}

    • The concentration of MnO₄⁻ is 20.0 mM, and we will calculate moles for each titrant volume.

      For Vtitran=13mLV_{\text{titran}} = 13 \, \text{mL}: moles of MnO4=20.0×103mol/L×0.013L=2.6×104mol\text{moles of MnO}_4^- = 20.0 \times 10^{-3} \, \text{mol/L} \times 0.013 \, \text{L} = 2.6 \times 10^{-4} \, \text{mol}

      For Vtitran=15mLV_{\text{titran}} = 15 \, \text{mL}: moles of MnO4=20.0×103mol/L×0.015L=3.0×104mol\text{moles of MnO}_4^- = 20.0 \times 10^{-3} \, \text{mol/L} \times 0.015 \, \text{L} = 3.0 \times 10^{-4} \, \text{mol}

      For Vtitran=17mLV_{\text{titran}} = 17 \, \text{mL}: moles of MnO4=20.0×103mol/L×0.017L=3.4×104mol\text{moles of MnO}_4^- = 20.0 \times 10^{-3} \, \text{mol/L} \times 0.017 \, \text{L} = 3.4 \times 10^{-4} \, \text{mol}

  3. Determine the Number of Moles of Fe²⁺ and Fe³⁺ Remaining: Based on the stoichiometric ratio, for every mole of MnO₄⁻, 5 moles of Fe²⁺ are oxidized.

    • For Vtitran=13mLV_{\text{titran}} = 13 \, \text{mL}: moles of Fe2+ consumed=5×2.6×104=1.3×103mol\text{moles of Fe}^{2+} \text{ consumed} = 5 \times 2.6 \times 10^{-4} = 1.3 \times 10^{-3} \, \text{mol} moles of Fe2+ remaining=1.5×1031.3×103=2.0×104mol\text{moles of Fe}^{2+} \text{ remaining} = 1.5 \times 10^{-3} - 1.3 \times 10^{-3} = 2.0 \times 10^{-4} \, \text{mol} moles of Fe3+ formed=1.3×103mol\text{moles of Fe}^{3+} \text{ formed} = 1.3 \times 10^{-3} \, \text{mol}

    • For Vtitran=15mLV_{\text{titran}} = 15 \, \text{mL}: [ \text{moles of Fe}^{2+} \text{ consumed} = 5 \times 3.0 \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Redox Reactions
Titration
Electrochemistry

Formulas

Number of moles = Molarity * Volume
Nernst equation: E = E° - (0.059/n) * log(Q)

Theorems

Nernst Equation

Suitable Grade Level

University Level (Advanced Chemistry)