Math Problem Statement

Use the limit definition to find the area of the region bounded by the graph of the following function and the x-axis over the given interval. Don’t forget to sketch the region. Give an exact answer. 𝑓(π‘₯) = 3π‘₯ βˆ’ 2 on [2,5]

Solution

To find the area of the region bounded by f(x)=3xβˆ’2f(x) = 3x - 2 and the x-axis over the interval [2,5][2,5] using the limit definition, we can proceed as follows:

Step 1: Set up the area formula using the limit definition

The area under a curve can be found using the limit of a Riemann sum. The interval [a,b][a, b] is divided into nn subintervals, each with width Ξ”x\Delta x, defined as:

Ξ”x=bβˆ’an\Delta x = \frac{b - a}{n}

For this problem:

  • a=2a = 2
  • b=5b = 5
  • Therefore, Ξ”x=5βˆ’2n=3n\Delta x = \frac{5 - 2}{n} = \frac{3}{n}

Next, we define the ii-th subinterval and the corresponding x-values. The ii-th x-value is given by:

xi=a+iΞ”x=2+iβ‹…3nx_i = a + i \Delta x = 2 + i \cdot \frac{3}{n}

Step 2: Define the Riemann sum

The Riemann sum approximating the area is given by:

βˆ‘i=1nf(xi)β‹…Ξ”x\sum_{i=1}^{n} f(x_i) \cdot \Delta x

Plugging in the function f(x)=3xβˆ’2f(x) = 3x - 2:

βˆ‘i=1n[3(2+iβ‹…3n)βˆ’2]β‹…Ξ”x\sum_{i=1}^{n} \left[ 3 \left( 2 + i \cdot \frac{3}{n} \right) - 2 \right] \cdot \Delta x

Simplifying:

[ \sum_{i=1}^{n} \left[ 6 + \frac{9i}{n} - 2 \right] \cdot \Delta x = \sum_{i=1}^{n} \left[ 4 + \frac{9i}{n} \right] \cdot \frac{3}{n} ]

=βˆ‘i=1n[12n+27in2]= \sum_{i=1}^{n} \left[ \frac{12}{n} + \frac{27i}{n^2} \right]

Step 3: Calculate the limit

We now take the limit as nβ†’βˆžn \to \infty:

lim⁑nβ†’βˆžβˆ‘i=1n[12n+27in2]\lim_{n \to \infty} \sum_{i=1}^{n} \left[ \frac{12}{n} + \frac{27i}{n^2} \right]

Separate the sum:

lim⁑nβ†’βˆž[βˆ‘i=1n12n+βˆ‘i=1n27in2]\lim_{n \to \infty} \left[ \sum_{i=1}^{n} \frac{12}{n} + \sum_{i=1}^{n} \frac{27i}{n^2} \right]

Calculate each sum:

  1. Sum of a constant: βˆ‘i=1n12n=12\sum_{i=1}^{n} \frac{12}{n} = 12

  2. Sum of ii: βˆ‘i=1ni=n(n+1)2β‰ˆn22\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2} for large nn.

Thus:

[ \lim_{n \to \infty} \left[ 12 + \frac{27 \cdot n^2}{2 }\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Riemann Sum
Limit Definition of Area
Linear Functions

Formulas

Area under the curve = lim(n -> ∞) Ξ£ f(x_i) * Ξ”x
Ξ”x = (b - a) / n
x_i = a + iΞ”x
Sum of first n natural numbers: Ξ£i = n(n+1)/2

Theorems

Limit Definition of Definite Integrals
Riemann Sum Theorem

Suitable Grade Level

Grade 12 - College Level Calculus