Math Problem Statement

Let vec a =2 hat i -2 hat j + hat k vec b = hat j - hat k and vec c =- hat i +3 hat j +2 hat k be given vectors. Find

(v) angle between vec a and vec b

(vi) sine of the angle between vec a and vec c

Solution

Let's solve for the following:

(v) Angle between a\vec{a} and b\vec{b}

To find the angle θ\theta between two vectors a\vec{a} and b\vec{b}, we use the formula:

cosθ=abab\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}

Step 1: Calculate the dot product ab\vec{a} \cdot \vec{b}

ab=(2i^2j^+k^)(j^k^)=(2×0)+(2×1)+(1×1)=21=3\vec{a} \cdot \vec{b} = (2\hat{i} - 2\hat{j} + \hat{k}) \cdot (\hat{j} - \hat{k}) = (2 \times 0) + (-2 \times 1) + (1 \times -1) = -2 - 1 = -3

Step 2: Calculate the magnitudes a\|\vec{a}\| and b\|\vec{b}\|

a=(2)2+(2)2+(1)2=4+4+1=9=3\|\vec{a}\| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3

b=(0)2+(1)2+(1)2=0+1+1=2\|\vec{b}\| = \sqrt{(0)^2 + (1)^2 + (-1)^2} = \sqrt{0 + 1 + 1} = \sqrt{2}

Step 3: Calculate cosθ\cos \theta

cosθ=33×2=332=12\cos \theta = \frac{-3}{3 \times \sqrt{2}} = \frac{-3}{3\sqrt{2}} = -\frac{1}{\sqrt{2}}

Step 4: Calculate the angle θ\theta

θ=cos1(12)=cos1(22)\theta = \cos^{-1} \left(-\frac{1}{\sqrt{2}}\right) = \cos^{-1} \left(-\frac{\sqrt{2}}{2}\right)

This implies θ=135\theta = 135^\circ or 3π4\frac{3\pi}{4} radians.


(vi) Sine of the angle between a\vec{a} and c\vec{c}

To find sinϕ\sin \phi, where ϕ\phi is the angle between a\vec{a} and c\vec{c}, we use the formula:

sinϕ=1cos2ϕ\sin \phi = \sqrt{1 - \cos^2 \phi}

Step 1: Calculate the dot product ac\vec{a} \cdot \vec{c}

ac=(2i^2j^+k^)(i^+3j^+2k^)=(2×1)+(2×3)+(1×2)=26+2=6\vec{a} \cdot \vec{c} = (2\hat{i} - 2\hat{j} + \hat{k}) \cdot (-\hat{i} + 3\hat{j} + 2\hat{k}) = (2 \times -1) + (-2 \times 3) + (1 \times 2) = -2 - 6 + 2 = -6

Step 2: Calculate the magnitudes a\|\vec{a}\| and c\|\vec{c}\|

We already know a=3\|\vec{a}\| = 3.

c=(1)2+(3)2+(2)2=1+9+4=14\|\vec{c}\| = \sqrt{(-1)^2 + (3)^2 + (2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14}

Step 3: Calculate cosϕ\cos \phi

cosϕ=acac=63×14=6314=214=2141414=21414=147\cos \phi = \frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\| \|\vec{c}\|} = \frac{-6}{3 \times \sqrt{14}} = \frac{-6}{3\sqrt{14}} = -\frac{2}{\sqrt{14}} = -\frac{2}{\sqrt{14}} \cdot \frac{\sqrt{14}}{\sqrt{14}} = -\frac{2\sqrt{14}}{14} = -\frac{\sqrt{14}}{7}

Step 4: Calculate sinϕ\sin \phi

sinϕ=1(147)2=11449=127=57\sin \phi = \sqrt{1 - \left(-\frac{\sqrt{14}}{7}\right)^2} = \sqrt{1 - \frac{14}{49}} = \sqrt{1 - \frac{2}{7}} = \sqrt{\frac{5}{7}}

Thus, the sine of the angle between a\vec{a} and c\vec{c} is 57\boxed{\sqrt{\frac{5}{7}}}.

Would you like more details or have any questions?

Here are some related questions:

  1. How do you find the cosine of the angle between two vectors?
  2. What is the geometric interpretation of the dot product?
  3. How do vectors relate to projections in space?
  4. How can the cross product help find angles between vectors?
  5. What are some applications of vectors in physics and engineering?

Tip: The dot product can determine not only the magnitude of the angle between two vectors but also the direction (acute or obtuse) based on the sign of the result.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Magnitude of Vectors
Angle between Vectors
Trigonometric Functions

Formulas

Dot product formula
Magnitude formula
Angle between vectors formula
Sine of angle formula

Theorems

-

Suitable Grade Level

Undergraduate level