Math Problem Statement

Find, correct to the nearest degree, the angle of inclination of a line with gradient: a) 3, b) 1/2, c) 1, d) 2.5, e) -2, f) 3/4, g) -1/10, h) -2/3.

Solution

To find the angle of inclination of a line given its gradient (or slope), we use the formula:

θ=tan1(m)\theta = \tan^{-1}(m)

Where:

  • θ\theta is the angle of inclination.
  • mm is the gradient (or slope) of the line.

For each given value of mm, we will calculate the angle using the inverse tangent function, tan1\tan^{-1}, and round the result to the nearest degree.

Let's calculate for each part:

  1. Part a (m = 3): θa=tan1(3)71.57θa72\theta_a = \tan^{-1}(3) \approx 71.57^\circ \quad \Rightarrow \theta_a \approx 72^\circ

  2. Part b (m = \frac{1}{2}): θb=tan1(12)26.57θb27\theta_b = \tan^{-1}\left(\frac{1}{2}\right) \approx 26.57^\circ \quad \Rightarrow \theta_b \approx 27^\circ

  3. Part c (m = 1): θc=tan1(1)=45\theta_c = \tan^{-1}(1) = 45^\circ

  4. Part d (m = 2.5): θd=tan1(2.5)68.20θd68\theta_d = \tan^{-1}(2.5) \approx 68.20^\circ \quad \Rightarrow \theta_d \approx 68^\circ

  5. Part e (m = -2): θe=tan1(2)63.43θe63\theta_e = \tan^{-1}(-2) \approx -63.43^\circ \quad \Rightarrow \theta_e \approx -63^\circ (The negative sign indicates the line is inclined downward.)

  6. Part f (m = \frac{3}{4}): θf=tan1(34)36.87θf37\theta_f = \tan^{-1}\left(\frac{3}{4}\right) \approx 36.87^\circ \quad \Rightarrow \theta_f \approx 37^\circ

  7. Part g (m = -\frac{1}{10}): θg=tan1(110)5.71θg6\theta_g = \tan^{-1}\left(-\frac{1}{10}\right) \approx -5.71^\circ \quad \Rightarrow \theta_g \approx -6^\circ

  8. Part h (m = -\frac{2}{3}): θh=tan1(23)33.69θh34\theta_h = \tan^{-1}\left(-\frac{2}{3}\right) \approx -33.69^\circ \quad \Rightarrow \theta_h \approx -34^\circ

Summary of angles (rounded to the nearest degree):

  • a: 7272^\circ
  • b: 2727^\circ
  • c: 4545^\circ
  • d: 6868^\circ
  • e: 63-63^\circ
  • f: 3737^\circ
  • g: 6-6^\circ
  • h: 34-34^\circ

Would you like more details on any part or have any specific questions?


Here are 5 related questions to practice:

  1. How would the angle change if the gradient was doubled for each case?
  2. What happens to the angle when the slope is zero?
  3. How can you graphically interpret a negative gradient's inclination?
  4. How would you calculate the angle if given an inclination instead of a gradient?
  5. What is the relation between the slope of a line and its perpendicular slope?

Tip: For gradients less than 1 (fractional), the angle of inclination is always smaller than 45 degrees.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Slopes
Inverse Tangent Function

Formulas

θ = tan^(-1)(m)

Theorems

Tangent and Inverse Tangent

Suitable Grade Level

Grades 9-12