Math Problem Statement

Find the value of a^4+ b^4+c^4 if a + b + c = 0 and a² + b² + c² = 38.

Solution

To find the value of a4+b4+c4a^4 + b^4 + c^4 given that a+b+c=0a + b + c = 0 and a2+b2+c2=38a^2 + b^2 + c^2 = 38, let's proceed step-by-step.

Step 1: Understanding the Identity

We start by squaring a+b+c=0a + b + c = 0 to gain further insights. Squaring both sides, we get: (a+b+c)2=0(a + b + c)^2 = 0 Expanding this: a2+b2+c2+2(ab+bc+ca)=0a^2 + b^2 + c^2 + 2(ab + bc + ca) = 0 Since a2+b2+c2=38a^2 + b^2 + c^2 = 38, we substitute this into the equation: 38+2(ab+bc+ca)=038 + 2(ab + bc + ca) = 0 Solving for ab+bc+caab + bc + ca, we find: 2(ab+bc+ca)=382(ab + bc + ca) = -38 ab+bc+ca=19ab + bc + ca = -19

Step 2: Finding a4+b4+c4a^4 + b^4 + c^4

To find a4+b4+c4a^4 + b^4 + c^4, we use the identity: (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)(a^2 + b^2 + c^2)^2 = a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2) Substitute a2+b2+c2=38a^2 + b^2 + c^2 = 38: 382=a4+b4+c4+2(a2b2+b2c2+c2a2)38^2 = a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2) Calculating 38238^2: 1444=a4+b4+c4+2(a2b2+b2c2+c2a2)1444 = a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2)

Step 3: Finding a2b2+b2c2+c2a2a^2b^2 + b^2c^2 + c^2a^2

We use the square of the sum of products identity: (ab+bc+ca)2=a2b2+b2c2+c2a2+2abc(a+b+c)(ab + bc + ca)^2 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a + b + c) Since a+b+c=0a + b + c = 0, the term 2abc(a+b+c)2abc(a + b + c) becomes zero, simplifying the equation to: (ab+bc+ca)2=a2b2+b2c2+c2a2(ab + bc + ca)^2 = a^2b^2 + b^2c^2 + c^2a^2 Substitute ab+bc+ca=19ab + bc + ca = -19: (19)2=a2b2+b2c2+c2a2(-19)^2 = a^2b^2 + b^2c^2 + c^2a^2 361=a2b2+b2c2+c2a2361 = a^2b^2 + b^2c^2 + c^2a^2

Step 4: Substitute and Solve for a4+b4+c4a^4 + b^4 + c^4

Substitute a2b2+b2c2+c2a2=361a^2b^2 + b^2c^2 + c^2a^2 = 361 back into our earlier equation: 1444=a4+b4+c4+23611444 = a^4 + b^4 + c^4 + 2 \cdot 361 1444=a4+b4+c4+7221444 = a^4 + b^4 + c^4 + 722 Subtract 722 from both sides: a4+b4+c4=1444722a^4 + b^4 + c^4 = 1444 - 722 a4+b4+c4=722a^4 + b^4 + c^4 = 722

Final Answer:

a4+b4+c4=722a^4 + b^4 + c^4 = 722

Would you like further details or explanations on any step?


Related Questions:

  1. How would the result change if a+b+c0a + b + c \neq 0?
  2. Can you find a3+b3+c3a^3 + b^3 + c^3 given a+b+c=0a + b + c = 0 and a2+b2+c2=38a^2 + b^2 + c^2 = 38?
  3. What if a2+b2+c2=50a^2 + b^2 + c^2 = 50 instead of 38? How does that affect a4+b4+c4a^4 + b^4 + c^4?
  4. How does the identity (a+b+c)2=0(a + b + c)^2 = 0 simplify polynomial identities for other powers?
  5. What is the effect of changing the sign of a,b,a, b, or cc on a4+b4+c4a^4 + b^4 + c^4?

Tip: When dealing with symmetric sums in algebra, identities often simplify expressions by reducing the number of terms you need to compute explicitly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Identities
Symmetric Sums

Formulas

(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
(a^2 + b^2 + c^2)^2 = a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2)
(ab + bc + ca)^2 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a + b + c)

Theorems

Symmetric Sum Identities
Expanding Powers of Polynomial Sums

Suitable Grade Level

Grades 10-12