Math Problem Statement

P1(b) Question: P1: (b) Let U be the fruits, and the ordering of elements of U has the elements increasing order; that is, a_i=i. What bit strings represent the set U={apple, orange, pear, banana, grape, cherry, peanut}, A={apple, pear, grape, cherry}, and B={pear, orange, cherry}. Express the bit string corresponding to the performance for A∪B, B∩A, A-B and A∆B'.

Calculate me this using standard mathematical symbol, sign, formula or language structures.

Solution

Let the universal set U={apple, orange, pear, banana, grape, cherry, peanut}U = \{ \text{apple, orange, pear, banana, grape, cherry, peanut} \}. Assign increasing indices to elements of UU as follows:

U={apple (1), orange (2), pear (3), banana (4), grape (5), cherry (6), peanut (7)}.U = \{\text{apple (1), orange (2), pear (3), banana (4), grape (5), cherry (6), peanut (7)}\}.

The bit string representation of a set indicates the presence (11) or absence (00) of elements of UU in the set.

Step 1: Representing sets as bit strings

  1. A={apple, pear, grape, cherry}A = \{\text{apple, pear, grape, cherry}\}:

    • Elements 1,3,5,61, 3, 5, 6 are in AA.
    • Bit string for A=1011010\text{Bit string for } A = 1011010.
  2. B={pear, orange, cherry}B = \{\text{pear, orange, cherry}\}:

    • Elements 2,3,62, 3, 6 are in BB.
    • Bit string for B=0110010\text{Bit string for } B = 0110010.

Step 2: Operations on sets

(a) Union ABA \cup B:

AB={apple, orange, pear, grape, cherry}.A \cup B = \{\text{apple, orange, pear, grape, cherry}\}. Bitwise OR operation: 1011010OR0110010=1111010.1011010 \, \text{OR} \, 0110010 = 1111010.

(b) Intersection ABA \cap B:

AB={pear, cherry}.A \cap B = \{\text{pear, cherry}\}. Bitwise AND operation: 1011010AND0110010=0010010.1011010 \, \text{AND} \, 0110010 = 0010010.

(c) Difference ABA - B:

AB={apple, grape}.A - B = \{\text{apple, grape}\}. Bitwise subtraction (where 11=01 - 1 = 0 and 10=11 - 0 = 1): 10110100110010=1001000.1011010 - 0110010 = 1001000.

(d) Symmetric Difference AΔBA \Delta B:

AΔB=(AB)(BA)={apple, orange, grape}.A \Delta B = (A - B) \cup (B - A) = \{\text{apple, orange, grape}\}. Bitwise XOR operation: 1011010XOR0110010=1101000.1011010 \, \text{XOR} \, 0110010 = 1101000.

Final Results

  1. ABA \cup B: 11110101111010.
  2. ABA \cap B: 00100100010010.
  3. ABA - B: 10010001001000.
  4. AΔBA \Delta B: 11010001101000.

Would you like me to clarify or expand on any specific operation?

Related Questions

  1. How can these operations be expressed using Venn diagrams?
  2. What is the complement of AA in UU?
  3. How is (AB)C(A \cup B)^C represented as a bit string?
  4. Can we generalize this process for larger universal sets?
  5. How does the result change if UU changes?

Tip: For bit string operations, ensure alignment of indices with the universal set

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Bit String Representation
Set Operations

Formulas

Bitwise OR for Union: A ∪ B
Bitwise AND for Intersection: A ∩ B
Bitwise Subtraction for Difference: A - B
Bitwise XOR for Symmetric Difference: A Δ B

Theorems

Properties of Set Operations
Distributive Laws of Set Theory

Suitable Grade Level

Grades 9-12