Math Problem Statement

Solve showing steps with explanations

Find the binomial expansion of (2 + x)^5, simplifying the terms. Hence find the coefficient of y^3 in the expansion of (2 + 3y + y^2)^5.

Solution

Let's solve this step by step.


Part (i): Binomial Expansion of (2+x)5(2 + x)^5

The binomial expansion formula is:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Here:

  • a=2a = 2, b=xb = x, and n=5n = 5.

We expand (2+x)5(2 + x)^5 term by term:

(2+x)5=k=05(5k)25kxk(2 + x)^5 = \sum_{k=0}^{5} \binom{5}{k} 2^{5-k} x^k

Now calculate each term where k=0,1,2,3,4,5k = 0, 1, 2, 3, 4, 5:

  1. For k=0k = 0: (50)250x0=1251=32\binom{5}{0} 2^{5-0} x^0 = 1 \cdot 2^5 \cdot 1 = 32

  2. For k=1k = 1: (51)251x1=524x=516x=80x\binom{5}{1} 2^{5-1} x^1 = 5 \cdot 2^4 \cdot x = 5 \cdot 16 \cdot x = 80x

  3. For k=2k = 2: (52)252x2=1023x2=108x2=80x2\binom{5}{2} 2^{5-2} x^2 = 10 \cdot 2^3 \cdot x^2 = 10 \cdot 8 \cdot x^2 = 80x^2

  4. For k=3k = 3: (53)253x3=1022x3=104x3=40x3\binom{5}{3} 2^{5-3} x^3 = 10 \cdot 2^2 \cdot x^3 = 10 \cdot 4 \cdot x^3 = 40x^3

  5. For k=4k = 4: (54)254x4=521x4=52x4=10x4\binom{5}{4} 2^{5-4} x^4 = 5 \cdot 2^1 \cdot x^4 = 5 \cdot 2 \cdot x^4 = 10x^4

  6. For k=5k = 5: (55)255x5=11x5=x5\binom{5}{5} 2^{5-5} x^5 = 1 \cdot 1 \cdot x^5 = x^5

Final Expansion:

(2+x)5=32+80x+80x2+40x3+10x4+x5(2 + x)^5 = 32 + 80x + 80x^2 + 40x^3 + 10x^4 + x^5


Part (ii): Coefficient of y3y^3 in (2+3y+y2)5(2 + 3y + y^2)^5

Here, we are tasked to find the coefficient of y3y^3 in the expansion of (2+3y+y2)5(2 + 3y + y^2)^5.

To solve this, we apply the multinomial expansion formula:

(a+b+c)n=i+j+k=nn!i!j!k!aibjck(a + b + c)^n = \sum_{i+j+k=n} \frac{n!}{i!j!k!} a^i b^j c^k

Here:

  • a=2a = 2, b=3yb = 3y, c=y2c = y^2, and n=5n = 5.
  • We need to find the terms where the total power of yy is 3.

Step 1: Identify Possible Combinations

The power of yy comes from:

  • bj=(3y)jb^j = (3y)^j contributes jj powers of yy,
  • ck=(y2)kc^k = (y^2)^k contributes 2k2k powers of yy.

We need j+2k=3j + 2k = 3, where i+j+k=5i + j + k = 5. Let's check possible values of jj and kk:

  1. j=3,k=0j = 3, k = 0j+2k=3j + 2k = 3, valid.
  2. j=1,k=1j = 1, k = 1j+2k=3j + 2k = 3, valid.

Thus, there are two contributing terms.


Step 2: Compute Each Term

  1. Case 1: j=3,k=0j = 3, k = 0

    • Here i=5jk=530=2i = 5 - j - k = 5 - 3 - 0 = 2.
    • The term is: 5!2!3!0!(2)2(3y)3(y2)0\frac{5!}{2!3!0!} (2)^2 (3y)^3 (y^2)^0 Simplify: 12026427y31=10427y3=1080y3\frac{120}{2 \cdot 6} \cdot 4 \cdot 27y^3 \cdot 1 = 10 \cdot 4 \cdot 27y^3 = 1080y^3
  2. Case 2: j=1,k=1j = 1, k = 1

    • Here i=5jk=511=3i = 5 - j - k = 5 - 1 - 1 = 3.
    • The term is: 5!3!1!1!(2)3(3y)1(y2)1\frac{5!}{3!1!1!} (2)^3 (3y)^1 (y^2)^1 Simplify: 12061183yy2=2083y3=480y3\frac{120}{6 \cdot 1 \cdot 1} \cdot 8 \cdot 3y \cdot y^2 = 20 \cdot 8 \cdot 3y^3 = 480y^3

Step 3: Add Coefficients

The total coefficient of y3y^3 is:

1080+480=15601080 + 480 = 1560


Final Answer:

  1. Part (i): (2+x)5=32+80x+80x2+40x3+10x4+x5(2 + x)^5 = 32 + 80x + 80x^2 + 40x^3 + 10x^4 + x^5
  2. Part (ii): The coefficient of y3y^3 in the expansion of (2+3y+y2)5(2 + 3y + y^2)^5 is 1560.

Do you need any further clarifications or explanations? Let me know!


Related Questions:

  1. How do you generalize the multinomial theorem for three variables?
  2. How do you find the coefficient of specific terms in multinomial expansions?
  3. Can you derive the binomial theorem for negative or fractional powers?
  4. What happens when nn in the binomial theorem is very large?
  5. How can Pascal’s triangle help in expanding binomials?

Tip:

When solving multinomial problems, ensure the exponents add up to the total power nn, and systematically check all combinations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Multinomial Expansion
Algebra

Formulas

Binomial Theorem: (a + b)^n = Σ [nCk * a^(n-k) * b^k]
Multinomial Theorem: (a + b + c)^n = Σ [n! / (i!j!k!) * a^i * b^j * c^k]

Theorems

Binomial Theorem
Multinomial Theorem

Suitable Grade Level

Grades 10-12