Math Problem Statement

Expand (2+x)⁵

Solution

To expand (2+x)5(2 + x)^5, we can use the Binomial Theorem. According to the Binomial Theorem:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

In this case, a=2a = 2, b=xb = x, and n=5n = 5. We calculate each term of the expansion as follows:

(2+x)5=k=05(5k)25kxk(2 + x)^5 = \sum_{k=0}^{5} \binom{5}{k} 2^{5-k} x^k

Now, let's compute each term:

  1. k=0k = 0: (50)25x0=1321=32\binom{5}{0} 2^{5} x^0 = 1 \cdot 32 \cdot 1 = 32
  2. k=1k = 1: (51)24x1=516x=80x\binom{5}{1} 2^{4} x^1 = 5 \cdot 16 \cdot x = 80x
  3. k=2k = 2: (52)23x2=108x2=80x2\binom{5}{2} 2^{3} x^2 = 10 \cdot 8 \cdot x^2 = 80x^2
  4. k=3k = 3: (53)22x3=104x3=40x3\binom{5}{3} 2^{2} x^3 = 10 \cdot 4 \cdot x^3 = 40x^3
  5. k=4k = 4: (54)21x4=52x4=10x4\binom{5}{4} 2^{1} x^4 = 5 \cdot 2 \cdot x^4 = 10x^4
  6. k=5k = 5: (55)20x5=11x5=x5\binom{5}{5} 2^{0} x^5 = 1 \cdot 1 \cdot x^5 = x^5

Now, summing these terms together:

(2+x)5=32+80x+80x2+40x3+10x4+x5(2 + x)^5 = 32 + 80x + 80x^2 + 40x^3 + 10x^4 + x^5

Thus, the expanded form is:

(2+x)5=x5+10x4+40x3+80x2+80x+32(2 + x)^5 = x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32

Would you like further details

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion

Formulas

(a + b)^n = ∑(n choose k) * a^(n-k) * b^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12