Math Problem Statement

((x-1)/(x+1))^n give me the first 3 terms

Solution

To find the first three terms of the expansion of (x1x+1)n\left(\frac{x-1}{x+1}\right)^n, we can apply the binomial series expansion for (1+u)n\left(1 + u\right)^n, where u=2x+1u = \frac{-2}{x+1}.

Let's go through the steps:

  1. Rewrite the expression:

    (x1x+1)n=(1+2x+1)n\left(\frac{x-1}{x+1}\right)^n = \left(1 + \frac{-2}{x+1}\right)^n

  2. Apply the binomial expansion:

    The binomial expansion for (1+u)n(1 + u)^n is:

    (1+u)n=1+nu+n(n1)2u2+(1 + u)^n = 1 + nu + \frac{n(n-1)}{2}u^2 + \cdots

  3. Substitute u=2x+1u = \frac{-2}{x+1}:

    Using this in the binomial expansion gives the first three terms:

    (x1x+1)n=1+n(2x+1)+n(n1)2(2x+1)2+\left(\frac{x-1}{x+1}\right)^n = 1 + n\left(\frac{-2}{x+1}\right) + \frac{n(n-1)}{2}\left(\frac{-2}{x+1}\right)^2 + \cdots

  4. Simplify the first three terms:

    [ \left(\frac{x-1}{x+1}\right)^n = 1 - \frac{2n}{x+1} + \frac

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Series Expansion

Formulas

(1 + u)^n = 1 + nu + (n(n-1)/2)u^2 + ...
u = -2/(x+1)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 11-12