Math Problem Statement

Let p be a real constant and n be a positive integer. (a) Expand    6 1 1n px x    in ascending powers of x as far as the term in 3 x . (b) If the coefficients of x and 2 x are 17 and 50, find the coefficient of 3 x .

Solution

Let's break down this problem step by step:

Part (a): Expand (1px)n(1+x)6(1 - px)^{-n}(1 + x)^6 in ascending powers of xx as far as the term in x3x^3.

We will use the binomial expansion for both terms separately and then multiply them together.

Step 1: Expand (1px)n(1 - px)^{-n}

Using the binomial expansion for (1px)n(1 - px)^{-n}, we get:

(1px)n=1+(n)(px)+n(n1)2!(px)2+n(n1)(n2)3!(px)3+(1 - px)^{-n} = 1 + (-n)(-px) + \frac{-n(-n-1)}{2!}(px)^2 + \frac{-n(-n-1)(-n-2)}{3!}(px)^3 + \cdots

Simplifying the terms:

(1px)n=1+npx+n(n+1)2p2x2+n(n+1)(n+2)6p3x3+(1 - px)^{-n} = 1 + npx + \frac{n(n+1)}{2}p^2x^2 + \frac{n(n+1)(n+2)}{6}p^3x^3 + \cdots

Step 2: Expand (1+x)6(1 + x)^6

Using the binomial expansion for (1+x)6(1 + x)^6, we get:

(1+x)6=1+6x+6(5)2x2+6(5)(4)6x3+(1 + x)^6 = 1 + 6x + \frac{6(5)}{2}x^2 + \frac{6(5)(4)}{6}x^3 + \cdots

Simplifying the terms:

(1+x)6=1+6x+15x2+20x3+(1 + x)^6 = 1 + 6x + 15x^2 + 20x^3 + \cdots

Step 3: Multiply the expansions

Now, multiply the two expansions term by term, up to the x3x^3 term.

Result=(1+npx+n(n+1)2p2x2+n(n+1)(n+2)6p3x3)×(1+6x+15x2+20x3)\text{Result} = (1 + npx + \frac{n(n+1)}{2}p^2x^2 + \frac{n(n+1)(n+2)}{6}p^3x^3) \times (1 + 6x + 15x^2 + 20x^3)

Let's expand this product term by term:

  1. Constant term:

1×1=11 \times 1 = 1

  1. Coefficient of xx:

1×6x+npx×1=6x+npx1 \times 6x + npx \times 1 = 6x + npx

So, the coefficient of xx is 6+np6 + np.

  1. Coefficient of x2x^2:

1×15x2+npx×6x+n(n+1)2p2x2×11 \times 15x^2 + npx \times 6x + \frac{n(n+1)}{2}p^2x^2 \times 1 =15x2+6npx2+n(n+1)2p2x2= 15x^2 + 6npx^2 + \frac{n(n+1)}{2}p^2x^2

So, the coefficient of x2x^2 is 15+6np+n(n+1)2p215 + 6np + \frac{n(n+1)}{2}p^2.

  1. Coefficient of x3x^3:

1×20x3+npx×15x2+n(n+1)2p2x2×6x+n(n+1)(n+2)6p3x3×11 \times 20x^3 + npx \times 15x^2 + \frac{n(n+1)}{2}p^2x^2 \times 6x + \frac{n(n+1)(n+2)}{6}p^3x^3 \times 1 =20x3+15npx3+6n(n+1)2p2x3+n(n+1)(n+2)6p3x3= 20x^3 + 15npx^3 + 6\frac{n(n+1)}{2}p^2x^3 + \frac{n(n+1)(n+2)}{6}p^3x^3

Simplifying, the coefficient of x3x^3 is:

20+15np+3n(n+1)p2+n(n+1)(n+2)6p320 + 15np + 3n(n+1)p^2 + \frac{n(n+1)(n+2)}{6}p^3

Part (b): Solve for pp and find the coefficient of x3x^3

We are given that the coefficient of xx is 17-17 and the coefficient of x2x^2 is 5050.

  1. For the coefficient of xx:

6+np=176 + np = -17

Solving for npnp:

np=176=23np = -17 - 6 = -23

So, np=23np = -23.

  1. For the coefficient of x2x^2:

15+6np+n(n+1)2p2=5015 + 6np + \frac{n(n+1)}{2}p^2 = 50

Substitute np=23np = -23:

15+6(23)+n(n+1)2p2=5015 + 6(-23) + \frac{n(n+1)}{2}p^2 = 50 15138+n(n+1)2p2=5015 - 138 + \frac{n(n+1)}{2}p^2 = 50 123+n(n+1)2p2=50-123 + \frac{n(n+1)}{2}p^2 = 50 n(n+1)2p2=50+123=173\frac{n(n+1)}{2}p^2 = 50 + 123 = 173 n(n+1)p2=346n(n+1)p^2 = 346

Now we have two equations:

  1. np=23np = -23
  2. n(n+1)p2=346n(n+1)p^2 = 346

From np=23np = -23, solve for pp:

p=23np = \frac{-23}{n}

Substitute this into n(n+1)p2=346n(n+1)p^2 = 346:

n(n+1)(23n)2=346n(n+1)\left(\frac{-23}{n}\right)^2 = 346 n(n+1)529n2=346n(n+1)\frac{529}{n^2} = 346 (n+1)529n=346(n+1)\frac{529}{n} = 346 529(n+1)=346n529(n+1) = 346n 529n+529=346n529n + 529 = 346n 529=183n529 = -183n n=5291832.89n = \frac{529}{183} \approx 2.89

Since nn must be a positive integer, this result suggests there may be additional constraints that need reevaluation based on rounding errors or misinterpretation of terms.

Let me correct details, but does this satisfy?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra
Polynomial Expansion

Formulas

Binomial Expansion: (1 + ax)^n = 1 + n(ax) + [n(n-1)/2](ax)^2 + ...
Multiplying series terms for polynomial expansion

Theorems

Binomial Theorem

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grades 11-12)