Math Problem Statement

If x is small (1-x)^-5/2+(16+8x)^1/2÷(1+x)^-1/2(2+x)^2

Solution

We are tasked with simplifying the expression:

(1x)5/2+16+8x÷((1+x)1/2(2+x)2)(1 - x)^{-5/2} + \sqrt{16 + 8x} \div \left( (1 + x)^{-1/2} (2 + x)^2 \right)

Given that xx is small, we will approximate the expression using a Taylor expansion for small xx.

Step 1: Approximation of (1x)5/2(1 - x)^{-5/2}

For small xx, the binomial expansion of (1x)n(1 - x)^{n} is:

(1x)n1+nx+n(n1)2x2(1 - x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2

For (1x)5/2(1 - x)^{-5/2}, n=5/2n = -5/2:

(1x)5/21+52x+52722x2=152x+358x2(1 - x)^{-5/2} \approx 1 + \frac{-5}{2}x + \frac{\frac{-5}{2} \cdot \frac{-7}{2}}{2} x^2 = 1 - \frac{5}{2}x + \frac{35}{8}x^2

Step 2: Approximation of 16+8x\sqrt{16 + 8x}

Next, we expand 16+8x\sqrt{16 + 8x} around x=0x = 0. Factor out the constant:

16+8x=41+x2\sqrt{16 + 8x} = 4 \sqrt{1 + \frac{x}{2}}

For small xx, use the binomial expansion for 1+u\sqrt{1 + u}:

1+u1+u2\sqrt{1 + u} \approx 1 + \frac{u}{2}

Substituting u=x2u = \frac{x}{2}:

16+8x=4(1+x4)=4+x\sqrt{16 + 8x} = 4 \left( 1 + \frac{x}{4} \right) = 4 + x

Step 3: Approximation of (1+x)1/2(1 + x)^{-1/2}

Similarly, for small xx, expand (1+x)1/2(1 + x)^{-1/2}:

(1+x)1/21x2(1 + x)^{-1/2} \approx 1 - \frac{x}{2}

Step 4: Approximation of (2+x)2(2 + x)^2

Expand (2+x)2(2 + x)^2:

(2+x)2=4+4x+x2(2 + x)^2 = 4 + 4x + x^2

Step 5: Putting everything together

Now, substitute the approximations into the expression:

16+8x(1+x)1/2(2+x)24+x(1x2)(4+4x+x2)\frac{\sqrt{16 + 8x}}{(1 + x)^{-1/2} (2 + x)^2} \approx \frac{4 + x}{(1 - \frac{x}{2})(4 + 4x + x^2)}

Approximate the denominator for small xx:

(1x2)(4+4x+x2)(42x)(4+4x)16+16x8x4x2=16+8x4x2(1 - \frac{x}{2})(4 + 4x + x^2) \approx (4 - 2x)(4 + 4x) \approx 16 + 16x - 8x - 4x^2 = 16 + 8x - 4x^2

Thus:

4+x16+8x4x24+x16(1+x2x24)4+x16(1x2+x24)\frac{4 + x}{16 + 8x - 4x^2} \approx \frac{4 + x}{16(1 + \frac{x}{2} - \frac{x^2}{4})} \approx \frac{4 + x}{16} (1 - \frac{x}{2} + \frac{x^2}{4})

416(1x2+x24)+x16(1x2)\approx \frac{4}{16} (1 - \frac{x}{2} + \frac{x^2}{4}) + \frac{x}{16} (1 - \frac{x}{2})

=14x8+x216+x16x232= \frac{1}{4} - \frac{x}{8} + \frac{x^2}{16} + \frac{x}{16} - \frac{x^2}{32}

Combining like terms:

=14x16+x232= \frac{1}{4} - \frac{x}{16} + \frac{x^2}{32}

Final expression

Adding (1x)5/2152x+358x2(1 - x)^{-5/2} \approx 1 - \frac{5}{2}x + \frac{35}{8}x^2 to this:

152x+358x2+(14x16+x232)1 - \frac{5}{2}x + \frac{35}{8}x^2 + \left( \frac{1}{4} - \frac{x}{16} + \frac{x^2}{32} \right)

=1+1452xx16+358x2+x232= 1 + \frac{1}{4} - \frac{5}{2}x - \frac{x}{16} + \frac{35}{8}x^2 + \frac{x^2}{32}

Thus, for small xx, the simplified expression is approximately:

544116x+14532x2\frac{5}{4} - \frac{41}{16}x + \frac{145}{32}x^2

Would you like more details on this or have any questions?

Here are five related questions:

  1. How does the binomial expansion help in approximations for small values of xx?
  2. Can you explain the general form of Taylor series used in approximations?
  3. Why do we factor out constants when approximating functions like 16+8x\sqrt{16 + 8x}?
  4. How do higher-order terms affect the accuracy of small xx approximations?
  5. Can you expand (1x)3/2(1 - x)^{-3/2} for small xx using binomial expansion?

Tip: When simplifying expressions with small variables, keeping up to the second-order terms often provides a good balance between accuracy and simplicity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Taylor Series
Algebra
Approximation for Small x

Formulas

Binomial expansion: (1 + x)^n ≈ 1 + nx + (n(n-1)/2)x^2
Taylor series expansion for small x
Approximation of square roots: √(1 + x) ≈ 1 + x/2

Theorems

Binomial Theorem
Taylor Series Approximation

Suitable Grade Level

Grades 11-12 or early university (Calculus level)