Math Problem Statement

Find a basis for the null space of the matrix. 14) A = [[1, 0 - 3, - 4, 0], [0, 1, 3 - 4, 0], [0, 0, 0, 0]]

Solution

To find a basis for the null space of a matrix, we need to solve the equation:

Ax=0A \mathbf{x} = 0

where AA is the given matrix, and x\mathbf{x} is the vector of unknowns x1,x2,x3,x4x_1, x_2, x_3, x_4. Let's start by setting up the matrix AA:

A=[103401340000]A = \begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}

Step 1: Write the equation Ax=0A \mathbf{x} = 0

Let x=[x1x2x3x4]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.

The equation becomes:

[103401340000][x1x2x3x4]=[000]\begin{bmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

This gives the following system of linear equations:

  1. x13x34x4=0x_1 - 3x_3 - 4x_4 = 0
  2. x2+3x34x4=0x_2 + 3x_3 - 4x_4 = 0
  3. 0=00 = 0 (which is trivially satisfied)

Step 2: Solve the system

From the first equation:

x1=3x3+4x4x_1 = 3x_3 + 4x_4

From the second equation:

x2=3x3+4x4x_2 = -3x_3 + 4x_4

Step 3: Parametrize the solution

Let x3=tx_3 = t and x4=sx_4 = s, where tt and ss are free variables. Then we can express the solution in terms of tt and ss:

x1=3t+4sx_1 = 3t + 4s x2=3t+4sx_2 = -3t + 4s x3=tx_3 = t x4=sx_4 = s

Thus, the general solution for x\mathbf{x} is:

x=[x1x2x3x4]=[3t+4s3t+4sts]\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3t + 4s \\ -3t + 4s \\ t \\ s \end{bmatrix}

This can be written as:

x=t[3310]+s[4401]\mathbf{x} = t \begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 4 \\ 4 \\ 0 \\ 1 \end{bmatrix}

Step 4: Conclusion

The null space of the matrix AA is spanned by the vectors:

[3310]and[4401]\begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 4 \\ 4 \\ 0 \\ 1 \end{bmatrix}

Thus, a basis for the null space of AA is:

{[3310],[4401]}\left\{ \begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \\ 0 \\ 1 \end{bmatrix} \right\}

Let me know if you'd like further details or clarification!

Further questions to explore:

  1. How do you check if a set of vectors forms a basis for a subspace?
  2. What is the rank-nullity theorem, and how does it relate to this problem?
  3. How would you solve for the null space of a matrix using row reduction?
  4. Can you find the null space of a matrix that has no solution or is inconsistent?
  5. What happens if the matrix has more rows than columns in terms of the null space?

Tip:

To find the null space of a matrix, always start by writing down the system of equations and then use row reduction or substitution to solve for the free variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Null Space
Matrices
Linear Systems

Formulas

A * x = 0

Theorems

Rank-Nullity Theorem

Suitable Grade Level

Grades 11-12