Math Problem Statement

The displacement (in centimeters) of a particle s moving back and forth along a straight line is given by the equation s = 4 sin(πœ‹t) + 3 cos(πœ‹t), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i) [1, 2]

[1, 1.01]

cm/s (iv) [1, 1.001]

Solution

To find the average velocity of the particle during the given time periods, we need to use the formula for average velocity:

Average velocity=s(t2)βˆ’s(t1)t2βˆ’t1\text{Average velocity} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}

where s(t)s(t) is the displacement at time tt, and [t1,t2][t_1, t_2] is the time interval.

The displacement function is given as:

s(t)=4sin⁑(Ο€t)+3cos⁑(Ο€t)s(t) = 4\sin(\pi t) + 3\cos(\pi t)

Let's calculate the average velocity for each of the specified intervals.

(i) Interval [1,2][1, 2]

  1. Calculate s(1)s(1) and s(2)s(2): s(1)=4sin⁑(Ο€β‹…1)+3cos⁑(Ο€β‹…1)=4sin⁑(Ο€)+3cos⁑(Ο€)=4(0)+3(βˆ’1)=βˆ’3s(1) = 4\sin(\pi \cdot 1) + 3\cos(\pi \cdot 1) = 4\sin(\pi) + 3\cos(\pi) = 4(0) + 3(-1) = -3 s(2)=4sin⁑(Ο€β‹…2)+3cos⁑(Ο€β‹…2)=4sin⁑(2Ο€)+3cos⁑(2Ο€)=4(0)+3(1)=3s(2) = 4\sin(\pi \cdot 2) + 3\cos(\pi \cdot 2) = 4\sin(2\pi) + 3\cos(2\pi) = 4(0) + 3(1) = 3

  2. Calculate the average velocity: Average velocity=s(2)βˆ’s(1)2βˆ’1=3βˆ’(βˆ’3)1=61=6 cm/s\text{Average velocity} = \frac{s(2) - s(1)}{2 - 1} = \frac{3 - (-3)}{1} = \frac{6}{1} = 6 \text{ cm/s}

(ii) Interval [1,1.01][1, 1.01]

  1. Calculate s(1.01)s(1.01): s(1.01)=4sin⁑(Ο€β‹…1.01)+3cos⁑(Ο€β‹…1.01)s(1.01) = 4\sin(\pi \cdot 1.01) + 3\cos(\pi \cdot 1.01) Using the approximations: sin⁑(Ο€β‹…1.01)β‰ˆsin⁑(Ο€+0.01Ο€)=βˆ’sin⁑(0.01Ο€)β‰ˆβˆ’0.0314\sin(\pi \cdot 1.01) \approx \sin(\pi + 0.01\pi) = -\sin(0.01\pi) \approx -0.0314 cos⁑(Ο€β‹…1.01)β‰ˆcos⁑(Ο€+0.01Ο€)=βˆ’cos⁑(0.01Ο€)β‰ˆβˆ’0.9995\cos(\pi \cdot 1.01) \approx \cos(\pi + 0.01\pi) = -\cos(0.01\pi) \approx -0.9995 s(1.01)β‰ˆ4(βˆ’0.0314)+3(βˆ’0.9995)=βˆ’0.1256βˆ’2.9985β‰ˆβˆ’3.1241s(1.01) \approx 4(-0.0314) + 3(-0.9995) = -0.1256 - 2.9985 \approx -3.1241

  2. Calculate the average velocity: Average velocity=s(1.01)βˆ’s(1)1.01βˆ’1=βˆ’3.1241βˆ’(βˆ’3)0.01=βˆ’0.12410.01=βˆ’12.41 cm/s\text{Average velocity} = \frac{s(1.01) - s(1)}{1.01 - 1} = \frac{-3.1241 - (-3)}{0.01} = \frac{-0.1241}{0.01} = -12.41 \text{ cm/s}

(iii) Interval [1,1.001][1, 1.001]

  1. Calculate s(1.001)s(1.001): s(1.001)=4sin⁑(Ο€β‹…1.001)+3cos⁑(Ο€β‹…1.001)s(1.001) = 4\sin(\pi \cdot 1.001) + 3\cos(\pi \cdot 1.001) Using the approximations: sin⁑(Ο€β‹…1.001)β‰ˆsin⁑(Ο€+0.001Ο€)=βˆ’sin⁑(0.001Ο€)β‰ˆβˆ’0.00314\sin(\pi \cdot 1.001) \approx \sin(\pi + 0.001\pi) = -\sin(0.001\pi) \approx -0.00314 cos⁑(Ο€β‹…1.001)β‰ˆcos⁑(Ο€+0.001Ο€)=βˆ’cos⁑(0.001Ο€)β‰ˆβˆ’0.999995\cos(\pi \cdot 1.001) \approx \cos(\pi + 0.001\pi) = -\cos(0.001\pi) \approx -0.999995 s(1.001)β‰ˆ4(βˆ’0.00314)+3(βˆ’0.999995)=βˆ’0.01256βˆ’2.999985β‰ˆβˆ’3.012545s(1.001) \approx 4(-0.00314) + 3(-0.999995) = -0.01256 - 2.999985 \approx -3.012545

  2. Calculate the average velocity: Average velocity=s(1.001)βˆ’s(1)1.001βˆ’1=βˆ’3.012545βˆ’(βˆ’3)0.001=βˆ’0.0125450.001=βˆ’12.55 cm/s\text{Average velocity} = \frac{s(1.001) - s(1)}{1.001 - 1} = \frac{-3.012545 - (-3)}{0.001} = \frac{-0.012545}{0.001} = -12.55 \text{ cm/s}

Final Results:

  • (i) Interval [1,2][1, 2]: Average velocity = 66 cm/s
  • (ii) Interval [1,1.01][1, 1.01]: Average velocity = βˆ’12.41-12.41 cm/s
  • (iii) Interval [1,1.001][1, 1.001]: Average velocity = βˆ’12.55-12.55 cm/s

Would you like any further details or explanations?


Related Questions:

  1. What is the instantaneous velocity at t=1t = 1 seconds?
  2. How does the average velocity change as the time interval decreases?
  3. Can you determine the acceleration of the particle at t=1t = 1 second?
  4. What is the maximum displacement of the particle and at what time does it occur?
  5. How would the displacement function change if the sine and cosine coefficients were swapped?

Tip: Average velocity over very short intervals can be used to approximate instantaneous velocity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Kinematics
Average Velocity

Formulas

Average velocity = (s(t2) - s(t1)) / (t2 - t1)
Displacement function: s(t) = 4 sin(Ο€t) + 3 cos(Ο€t)

Theorems

-

Suitable Grade Level

Grades 10-12