Math Problem Statement

The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 2sin(πœ‹t) + 2cos(πœ‹t), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i) [1, 2] cm/s

(ii) [1, 1.1] cm/s

(iii) [1, 1.01] cm/s

(iv) [1, 1.001] cm/s

(b) Estimate the instantaneous velocity of the particle when t = 1. cm/s

Solution

Given the displacement function s(t)=2sin⁑(Ο€t)+2cos⁑(Ο€t)s(t) = 2\sin(\pi t) + 2\cos(\pi t), we need to calculate the average velocity over various time intervals and then estimate the instantaneous velocity at t=1t = 1.

(a) Average Velocity Calculation

The average velocity over a time interval [t1,t2][t_1, t_2] is given by: Average velocity=s(t2)βˆ’s(t1)t2βˆ’t1\text{Average velocity} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} where s(t)s(t) is the displacement function.

(i) For the interval [1,2][1, 2]:

s(1)=2sin⁑(π×1)+2cos⁑(π×1)=2sin⁑(Ο€)+2cos⁑(Ο€)=2(0)+2(βˆ’1)=βˆ’2 cms(1) = 2\sin(\pi \times 1) + 2\cos(\pi \times 1) = 2\sin(\pi) + 2\cos(\pi) = 2(0) + 2(-1) = -2 \text{ cm} s(2)=2sin⁑(π×2)+2cos⁑(π×2)=2sin⁑(2Ο€)+2cos⁑(2Ο€)=2(0)+2(1)=2 cms(2) = 2\sin(\pi \times 2) + 2\cos(\pi \times 2) = 2\sin(2\pi) + 2\cos(2\pi) = 2(0) + 2(1) = 2 \text{ cm} Average velocity=2βˆ’(βˆ’2)2βˆ’1=41=4 cm/s\text{Average velocity} = \frac{2 - (-2)}{2 - 1} = \frac{4}{1} = 4 \text{ cm/s}

(ii) For the interval [1,1.1][1, 1.1]:

s(1.1)=2sin⁑(π×1.1)+2cos⁑(π×1.1)=2sin⁑(1.1Ο€)+2cos⁑(1.1Ο€)s(1.1) = 2\sin(\pi \times 1.1) + 2\cos(\pi \times 1.1) = 2\sin(1.1\pi) + 2\cos(1.1\pi) s(1.1)=2(βˆ’0.309)+2(0.951)β‰ˆβˆ’0.618+1.902=1.284 cms(1.1) = 2(-0.309) + 2(0.951) \approx -0.618 + 1.902 = 1.284 \text{ cm} Average velocity=1.284βˆ’(βˆ’2)1.1βˆ’1=3.2840.1=32.84 cm/s\text{Average velocity} = \frac{1.284 - (-2)}{1.1 - 1} = \frac{3.284}{0.1} = 32.84 \text{ cm/s}

(iii) For the interval [1,1.01][1, 1.01]:

s(1.01)=2sin⁑(π×1.01)+2cos⁑(π×1.01)=2sin⁑(1.01Ο€)+2cos⁑(1.01Ο€)s(1.01) = 2\sin(\pi \times 1.01) + 2\cos(\pi \times 1.01) = 2\sin(1.01\pi) + 2\cos(1.01\pi) s(1.01)=2(βˆ’0.0314)+2(0.9995)β‰ˆβˆ’0.0628+1.999=1.9362 cms(1.01) = 2(-0.0314) + 2(0.9995) \approx -0.0628 + 1.999 = 1.9362 \text{ cm} Average velocity=1.9362βˆ’(βˆ’2)1.01βˆ’1=3.93620.01=393.62 cm/s\text{Average velocity} = \frac{1.9362 - (-2)}{1.01 - 1} = \frac{3.9362}{0.01} = 393.62 \text{ cm/s}

(iv) For the interval [1,1.001][1, 1.001]:

s(1.001)=2sin⁑(π×1.001)+2cos⁑(π×1.001)=2sin⁑(1.001Ο€)+2cos⁑(1.001Ο€)s(1.001) = 2\sin(\pi \times 1.001) + 2\cos(\pi \times 1.001) = 2\sin(1.001\pi) + 2\cos(1.001\pi) s(1.001)=2(βˆ’0.00314)+2(0.999995)β‰ˆβˆ’0.00628+1.99999=1.99371 cms(1.001) = 2(-0.00314) + 2(0.999995) \approx -0.00628 + 1.99999 = 1.99371 \text{ cm} Average velocity=1.99371βˆ’(βˆ’2)1.001βˆ’1=3.993710.001=3993.71 cm/s\text{Average velocity} = \frac{1.99371 - (-2)}{1.001 - 1} = \frac{3.99371}{0.001} = 3993.71 \text{ cm/s}

(b) Instantaneous Velocity at t=1t = 1

The instantaneous velocity at t=1t = 1 can be estimated by finding the derivative of s(t)s(t) with respect to tt and then evaluating it at t=1t = 1.

First, find sβ€²(t)s'(t): s(t)=2sin⁑(Ο€t)+2cos⁑(Ο€t)s(t) = 2\sin(\pi t) + 2\cos(\pi t) sβ€²(t)=2Ο€cos⁑(Ο€t)βˆ’2Ο€sin⁑(Ο€t)s'(t) = 2\pi\cos(\pi t) - 2\pi\sin(\pi t)

At t=1t = 1: sβ€²(1)=2Ο€cos⁑(Ο€)βˆ’2Ο€sin⁑(Ο€)=2Ο€(βˆ’1)βˆ’2Ο€(0)=βˆ’2Ο€ cm/sβ‰ˆβˆ’6.28 cm/ss'(1) = 2\pi\cos(\pi) - 2\pi\sin(\pi) = 2\pi(-1) - 2\pi(0) = -2\pi \text{ cm/s} \approx -6.28 \text{ cm/s}

Final Answers:

(a) Average velocity:

  • (i) [1, 2]: 44 cm/s
  • (ii) [1, 1.1]: 32.8432.84 cm/s
  • (iii) [1, 1.01]: 393.62393.62 cm/s
  • (iv) [1, 1.001]: 3993.713993.71 cm/s

(b) Instantaneous velocity at t=1t = 1: βˆ’6.28-6.28 cm/s

Would you like more details or have any questions?

Related Questions:

  1. How do you calculate average velocity for a different function?
  2. What are the physical interpretations of positive and negative instantaneous velocities?
  3. How would the results change if the displacement function included a quadratic term?
  4. What happens to the velocity as the time interval decreases further?
  5. How can you use limits to find the instantaneous velocity more rigorously?

Tip:

Always ensure to keep track of units when performing calculations, especially when dealing with physical quantities like displacement, velocity, and time.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Calculus
Velocity
Average Velocity
Instantaneous Velocity

Formulas

Average velocity = (s(t2) - s(t1)) / (t2 - t1)
Instantaneous velocity = ds/dt
s(t) = 2sin(Ο€t) + 2cos(Ο€t)

Theorems

Derivative of trigonometric functions

Suitable Grade Level

Grades 11-12