Math Problem Statement

Find the average value fave of the function f on the given interval. f(x) = x2 (x3 + 7)2 , [−1, 1]

Solution

The average value of a function f(x)f(x) on an interval [a,b][a, b] is given by the formula:

fave=1baabf(x)dxf_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \,dx

Given function:

f(x)=x2(x3+7)2f(x) = \frac{x^2}{(x^3 + 7)^2}

Given interval:

[1,1][-1,1]

Thus, we compute:

fave=11(1)11x2(x3+7)2dxf_{\text{ave}} = \frac{1}{1 - (-1)} \int_{-1}^{1} \frac{x^2}{(x^3 + 7)^2} \,dx

This simplifies to:

fave=1211x2(x3+7)2dxf_{\text{ave}} = \frac{1}{2} \int_{-1}^{1} \frac{x^2}{(x^3 + 7)^2} \,dx

Substitution:

Let u=x3+7u = x^3 + 7, then differentiating both sides:

du=3x2dxdu3=x2dxdu = 3x^2 dx \quad \Rightarrow \quad \frac{du}{3} = x^2 dx

Rewriting the integral in terms of uu:

11x2(x3+7)2dx=11x2u2dx\int_{-1}^{1} \frac{x^2}{(x^3 + 7)^2} \,dx = \int_{-1}^{1} \frac{x^2}{u^2} \,dx

Using the substitution:

u(1)u(1)du3u2\int_{u(-1)}^{u(1)} \frac{\frac{du}{3}}{u^2}

13u(1)u(1)u2du\frac{1}{3} \int_{u(-1)}^{u(1)} u^{-2} \,du

13[1u]u(1)u(1)\frac{1}{3} \left[ -\frac{1}{u} \right]_{u(-1)}^{u(1)}

Evaluating at x=1u(1)=(1)3+7=6x = -1 \Rightarrow u(-1) = (-1)^3 + 7 = 6, and at x=1u(1)=13+7=8x = 1 \Rightarrow u(1) = 1^3 + 7 = 8:

13[18+16]\frac{1}{3} \left[ -\frac{1}{8} + \frac{1}{6} \right]

Finding a common denominator (24):

13[324+424]=13×124=172\frac{1}{3} \left[ -\frac{3}{24} + \frac{4}{24} \right] = \frac{1}{3} \times \frac{1}{24} = \frac{1}{72}

Now, multiply by 12\frac{1}{2} for the average value:

fave=12×172=1144f_{\text{ave}} = \frac{1}{2} \times \frac{1}{72} = \frac{1}{144}

Final Answer:

fave=1144f_{\text{ave}} = \frac{1}{144}


Would you like a step-by-step breakdown of the integration? Let me know if anything needs clarification!

Related Questions:

  1. How do you find the average value of a function on any given interval?
  2. What is the significance of the average value of a function?
  3. How does substitution simplify complex integrals?
  4. Why is the function symmetric over the interval [1,1][-1,1]?
  5. What are common mistakes when evaluating definite integrals?

Tip:

When using substitution in integrals, always remember to adjust the limits of integration accordingly to avoid back-substituting at the end.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Average Value of a Function
Definite Integrals
Substitution in Integrals

Formulas

f_{ave} = (1 / (b - a)) * ∫[a, b] f(x) dx

Theorems

Fundamental Theorem of Calculus
Integration by Substitution

Suitable Grade Level

Grades 11-12