Math Problem Statement
安排包含x和y在內的12個人分坐成兩行,每行有6個人。若x和y須相鄰而坐,求安排坐位的方法數目
Solution
這個問題涉及到排列與組合。要求在12個人中,其中兩個特定的人(x和y)必須相鄰而坐,並且要分成兩排,每排6個人。
步驟1:將x和y視為一個整體單位
由於x和y必須相鄰,我們可以將他們視為一個「整體單位」。這樣,我們可以先安排這個「整體單位」以及其餘的10個人(因為兩個人視為一個單位,所以總人數變為11個)。
步驟2:排列這11個單位
將這11個單位排列在兩排中,每排6個位置。對於每排的排列,排列的方式為:
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Combinatorics
Permutations and Combinations
Formulas
Number of ways to arrange n items in two groups of size k and (n-k): \binom{n}{k} \times k! \times (n-k)!
Factorial: n! = n × (n-1) × ... × 1
Theorems
Permutation Theorem
Combination Formula
Suitable Grade Level
Grades 10-12
Related Recommendation
Seating Arrangement Problem with Adjacency: x and y Must Sit Together
Arrange 5 Men, 4 Women, and 3 Children with Men Sitting Together
How to Seat 6 People in 11 Seats with 3 People Sitting Together
Combinatorial Seating Arrangements for Two Rows of Seats
Arranging 5 Men, 4 Women, and 3 Children with Men Sitting Together