Math Problem Statement

Multiple math problems involving arithmetic series, sequence comparison, equation solving, and combinatorics.

Solution

Let’s analyze the questions step by step to provide clear solutions.


Question 8

a) Calculate:
1+2+3++2014100110022014500500=?1 + 2 + 3 + \ldots + 2014 - 1001 - 1002 - \ldots - 2014 - 500500 = ?

  1. The sum of integers from 11 to 20142014 is given by: S=201420152=2031055S = \frac{2014 \cdot 2015}{2} = 2031055
  2. The sum of integers from 10011001 to 20142014 is: S1001=(2014+1001)10142=1529157S_{1001} = \frac{(2014 + 1001) \cdot 1014}{2} = 1529157
  3. Subtract these values and the 500500500500: 20310551529157500500=02031055 - 1529157 - 500500 = 0

Result: 00

b) Calculate:
3+5+7++20132462012=?3 + 5 + 7 + \ldots + 2013 - 2 - 4 - 6 - \ldots - 2012 = ?

  1. The sum 3+5+7++20133 + 5 + 7 + \ldots + 2013 is an arithmetic sequence with nn terms. The first term is 33, the last term is 20132013, and the common difference is 22.
    n=201332+1=1006n = \frac{2013 - 3}{2} + 1 = 1006 Sum: S=1006(3+2013)2=1010038S = \frac{1006 \cdot (3 + 2013)}{2} = 1010038

  2. The sum 2+4+6++20122 + 4 + 6 + \ldots + 2012 follows the same structure: n=201222+1=1006n = \frac{2012 - 2}{2} + 1 = 1006 Sum: S=1006(2+2012)2=1010036S = \frac{1006 \cdot (2 + 2012)}{2} = 1010036

  3. Subtract the sums: 10100381010036=21010038 - 1010036 = 2

Result: 22


Question 9

Compare numbers aa and bb:

  • a=20122011+20102009++21a = 2012 - 2011 + 2010 - 2009 + \ldots + 2 - 1
  • b=20122010+20082006++86+42b = 2012 - 2010 + 2008 - 2006 + \ldots + 8 - 6 + 4 - 2
  1. aa is a sequence of alternating additions and subtractions: a=(20122011)+(20102009)++(21)=1+1++1=1006a = (2012 - 2011) + (2010 - 2009) + \ldots + (2 - 1) = 1 + 1 + \ldots + 1 = 1006

  2. bb groups pairs as 201220102012 - 2010, 200820062008 - 2006, ..., which are all 22: b=2+2++2=2503=1006b = 2 + 2 + \ldots + 2 = 2 \cdot 503 = 1006

Result: a=ba = b


Question 10

Compare numbers aa and bb:

  • a=100(1+2+3++102)a = 100 \cdot (1 + 2 + 3 + \ldots + 102)
  • b=(1+2+3++100)b = (1 + 2 + 3 + \ldots + 100)
  1. aa: Sum from 11 to 102102 is: S102=1021032=5253S_{102} = \frac{102 \cdot 103}{2} = 5253 So, a=1005253=525300a = 100 \cdot 5253 = 525300

  2. bb: Sum from 11 to 100100 is: S100=1001012=5050S_{100} = \frac{100 \cdot 101}{2} = 5050

Result: a>ba > b


Question 11

Find xx from:

  • a) 2x+3x+4x++4028x=201420152x + 3x + 4x + \ldots + 4028x = 2014 \cdot 2015

This simplifies to: (2+3+4++4028)x=20142015(2 + 3 + 4 + \ldots + 4028)x = 2014 \cdot 2015 The sum of integers from 22 to 40284028 is: S=(4028+2)40272=8112457S = \frac{(4028 + 2) \cdot 4027}{2} = 8112457 Thus: 8112457x=20142015    x=2014201581124578112457x = 2014 \cdot 2015 \implies x = \frac{2014 \cdot 2015}{8112457}

b) Similar logic applies for the expanded sequence.


Question 12

Find xx: x(1+2+3++2014)(1+3+5++2013)=20142016x - \left(1 + 2 + 3 + \ldots + 2014\right) - \left(1 + 3 + 5 + \ldots + 2013\right) = 2014 - 2016


Further Explanation?

Would you like solutions to be expanded, or should I clarify any specific steps?


5 Related Questions:

  1. How do you calculate the sum of a geometric sequence efficiently?
  2. What is the general formula for summing alternating series?
  3. How do you derive the difference between two arithmetic series?
  4. How do you calculate terms in mixed series equations like Question 11?
  5. What is the method to count terms in repetitive sequences like Question 13?

Tip: Always simplify expressions systematically when alternating additions and subtractions are involved!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Progressions
Series Summation
Sequence Comparison
Linear Equations
Combinatorics

Formulas

Sum of an arithmetic series: S = n/2 * (a + l)
Number of terms in an arithmetic progression: n = (l - a)/d + 1
Summation of odd/even series

Theorems

Properties of Arithmetic Progressions
Basic Combinatorial Counting

Suitable Grade Level

Grades 8-12