Math Problem Statement

50, 25, 0, -25, -50, _

Solution

The sequence you provided follows a consistent pattern where each term decreases by 25. Let's break it down:

  • 50 → 25 (decrease by 25)
  • 25 → 0 (decrease by 25)
  • 0 → -25 (decrease by 25)
  • -25 → -50 (decrease by 25)

Following this pattern, the next term would be:

5025=75-50 - 25 = -75

Thus, the missing term is -75.

Would you like more details or have any questions?

Here are some related questions for further exploration:

  1. What is the general formula for this arithmetic sequence?
  2. How would you find the 10th term in this sequence?
  3. Can this pattern be represented as a linear equation?
  4. How can you determine the sum of the first 10 terms in this sequence?
  5. How does the concept of a common difference apply to arithmetic sequences?

Tip: In an arithmetic sequence, the difference between consecutive terms is constant. This difference is called the "common difference."

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arithmetic Sequences
Patterns
Common Difference

Formulas

Arithmetic sequence formula: a_n = a_1 + (n - 1) * d

Theorems

Arithmetic sequence common difference theorem

Suitable Grade Level

Grades 6-8