Math Problem Statement

Find the area of the region that lies above the x-axis, below the curve x = t^2 + 3t + 9, y = e^(-t) with 0 ≤ t ≤ 1. Give your answer exactly or round to four decimal places.

Solution

To calculate the area of the region above the xx-axis and below the given parametric curve:

x=t2+3t+9,y=et,0t1,x = t^2 + 3t + 9, \quad y = e^{-t}, \quad 0 \leq t \leq 1,

we will use the following formula for the area under a parametric curve:

Area=t=at=bydxdtdt.\text{Area} = \int_{t=a}^{t=b} y \frac{dx}{dt} \, dt.

Steps:

  1. Compute dxdt\frac{dx}{dt} from the given x=t2+3t+9x = t^2 + 3t + 9: dxdt=2t+3.\frac{dx}{dt} = 2t + 3.

  2. Substitute y=ety = e^{-t} and dxdt=2t+3\frac{dx}{dt} = 2t + 3 into the formula: Area=01et(2t+3)dt.\text{Area} = \int_{0}^{1} e^{-t}(2t + 3) \, dt.

  3. Expand the integrand: Area=01(2tet+3et)dt.\text{Area} = \int_{0}^{1} \left( 2te^{-t} + 3e^{-t} \right) \, dt.

  4. Split the integral into two parts: Area=012tetdt+013etdt.\text{Area} = \int_{0}^{1} 2te^{-t} \, dt + \int_{0}^{1} 3e^{-t} \, dt.

  5. Solve each integral:

    • For 013etdt\int_{0}^{1} 3e^{-t} \, dt, the result is: 013etdt=[3et]01=3e1+3.\int_{0}^{1} 3e^{-t} \, dt = \left[ -3e^{-t} \right]_{0}^{1} = -3e^{-1} + 3.

    • For 012tetdt\int_{0}^{1} 2te^{-t} \, dt, use integration by parts: Let u=2tu = 2t, dv=etdtdv = e^{-t} dt. Then: u=2t,du=2dt,v=et.u = 2t, \, du = 2 \, dt, \, v = -e^{-t}. Apply the formula: 2tetdt=2tet2etdt=2tet+2et.\int 2te^{-t} \, dt = -2te^{-t} - \int -2e^{-t} \, dt = -2te^{-t} + 2e^{-t}. Evaluate from 00 to 11: 012tetdt=[2tet+2et]01=(2e1+2e1)(0+2)=2e1+2e12.\int_{0}^{1} 2te^{-t} \, dt = \left[ -2te^{-t} + 2e^{-t} \right]_{0}^{1} = \left( -2e^{-1} + 2e^{-1} \right) - \left( 0 + 2 \right) = -2e^{-1} + 2e^{-1} - 2.

  6. Combine the results:

    • First term: 3e1+3-3e^{-1} + 3.
    • Second term: 2-2.

    Total: Area=(3e1+3)+(2)=3e1+1.\text{Area} = (-3e^{-1} + 3) + (-2) = -3e^{-1} + 1.

  7. Approximate the result: Substitute e10.3679e^{-1} \approx 0.3679: Area3(0.3679)+11.1037+1=0.1037.\text{Area} \approx -3(0.3679) + 1 \approx -1.1037 + 1 = -0.1037.

Would you like more detailed steps or clarifications?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Definite Integration
Integration by Parts
Exponential Functions

Formulas

Area under a parametric curve: A = ∫[a, b] y (dx/dt) dt
Integration by parts: ∫ u dv = uv - ∫ v du

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate (Calculus)