Math Problem Statement
Set up a sum of two integrals that equals the area of the shaded region bounded by the graphs of the functions f and g on [a,c] in the figure. Assume the curves intersect at xequals=b. a b c 0 x y y equals f left parenthesis x right parenthesisy=f(x)y equals g left parenthesis x right parenthesisy=g(x)
A curved line labeled y equals f of x starts at x equals A and decreases at a decreasing rate until it reaches the point where x equals B. The curve then increases at a decreasing rate until it reaches a maximum where x equals C. A curved line labeled y equals g of x starts at x equals A and decreases at a decreasing rate until it reaches a minimum. The line then increases intersecting the line labeled y equals f of x where x equals B. The line continues to increase reaching a maximum and then decreases until it reaches a point where x equals C. Question content area bottom Part 1 Choose the correct answer below. A.Integral from a to b left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx minus Integral from b to c left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx Integral from a to b left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx minus Integral from b to c left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx∫ab(f(x)+g(x))dx−∫bc(f(x)+g(x))dx B.Integral from a to b left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis dx plus Integral from b to c left parenthesis g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis dx Integral from a to b left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis dx plus Integral from b to c left parenthesis g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis dx∫ab(f(x)−g(x))dx+∫bc(g(x)−f(x))dx C.Integral from a to b left parenthesis g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis dx plus Integral from b to c left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis dx Integral from a to b left parenthesis g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis right parenthesis dx plus Integral from b to c left parenthesis f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis right parenthesis dx∫ab(g(x)−f(x))dx+∫bc(f(x)−g(x))dx D.Integral from b to c left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx minus Integral from a to b left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx Integral from b to c left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx minus Integral from a to b left parenthesis f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis right parenthesis dx∫bc(f(x)+g(x))dx−∫ab (f(x)+g(x))dx
Solution
The correct choice is B:
Explanation:
-
Understanding the bounds:
- On the interval , lies above , so the area is given by .
- On the interval , lies above , so the area is given by .
-
Combining the areas:
- To find the total area of the shaded region, sum the two integrals. Therefore, the total area is:
This matches the choice B. Let me know if you would like further clarification or details!
Related Questions:
- What happens if at all points in ?
- How do you compute definite integrals if and are given explicitly?
- What does the result of each integral represent geometrically?
- How would this change if the intersection occurs at more than one point?
- Can the integral bounds or expressions change if and switch roles between intervals?
Tip:
Always ensure the function order in subtraction ( or ) matches the graph's visual hierarchy within the interval.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Definite integrals
Area between curves
Graph analysis
Formulas
Area between two curves: ∫[a,b] (f(x) - g(x)) dx
Theorems
Fundamental Theorem of Calculus
Area interpretation of definite integrals
Suitable Grade Level
Grades 10-12
Related Recommendation
Finding the Area of a Region Between Curves Using Integrals
Calculate Area Between Curves Using Integration
Calculating the Area under a Curve using Definite Integral
Calculate Area Between Curves Using Definite Integrals - Step-by-Step Solution
Calculating the Area Between Curves Using Definite Integrals