Math Problem Statement

Find the length of the curve <math xmlns="http://www.w3.org/1998/Math/MathML">

<mstyle displaystyle="true">
<mover>

  <mi>r</mi>

  <mo>&#xAF;</mo>

</mover>

<mrow>

  <mo>(</mo>

  <mi>t</mi>

  <mo>)</mo>

</mrow>

<mo>=</mo>

<mrow>

  <mo>&#x2329;</mo>

  <mn>9</mn>

  <msup>

    <mi>t</mi>

    <mn>2</mn>

  </msup>

  <mo>,</mo>

  <mn>6</mn>

  <mi>t</mi>

  <mo>,</mo>

  <mrow>

    <mi>ln</mi>

    <mrow>

      <mo>(</mo>

      <mi>t</mi>

      <mo>)</mo>

    </mrow>

  </mrow>

  <mo>&#x232A;</mo>

</mrow>
</mstyle> </math>

for <math xmlns="http://www.w3.org/1998/Math/MathML">

<mstyle displaystyle="true">
<mn>1</mn>

<mo>&#x2264;</mo>

<mi>t</mi>

<mo>&#x2264;</mo>

<mn>4</mn>
</mstyle> </math>

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Arc Length of a Curve
Vector Functions
Integration

Formulas

Arc Length Formula: L = ∫[a, b] ||dr̅(t)/dt|| dt
Derivative of Vector Function: dr̅(t)/dt = ⟨18t, 6, 1/t⟩
Magnitude of Vector: ||dr̅(t)/dt|| = √(324t² + 36 + 1/t²)

Theorems

Arc Length Formula for Vector Functions

Suitable Grade Level

University (Calculus II or Multivariable Calculus)