Math Problem Statement
Find the length of the curve <math xmlns="http://www.w3.org/1998/Math/MathML">
<mstyle displaystyle="true"><mover>
<mi>r</mi>
<mo>¯</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>〈</mo>
<mn>9</mn>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
<mo>,</mo>
<mn>6</mn>
<mi>t</mi>
<mo>,</mo>
<mrow>
<mi>ln</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>〉</mo>
</mrow>
</mstyle>
</math>
for <math xmlns="http://www.w3.org/1998/Math/MathML">
<mstyle displaystyle="true"><mn>1</mn>
<mo>≤</mo>
<mi>t</mi>
<mo>≤</mo>
<mn>4</mn>
</mstyle>
</math>Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Arc Length of a Curve
Vector Functions
Integration
Formulas
Arc Length Formula: L = ∫[a, b] ||dr̅(t)/dt|| dt
Derivative of Vector Function: dr̅(t)/dt = ⟨18t, 6, 1/t⟩
Magnitude of Vector: ||dr̅(t)/dt|| = √(324t² + 36 + 1/t²)
Theorems
Arc Length Formula for Vector Functions
Suitable Grade Level
University (Calculus II or Multivariable Calculus)
Related Recommendation
Arc Length of the Curve r(t) = ⟨3t^2, 2√3t, ln t⟩ for 1 ≤ t ≤ 6
Compute the Arc Length of the Parametric Curve r(t) = ⟨2t, ln t, t^2⟩
Find the Length of the Curve Defined by r(t) = ⟨t^2, t^3, t^4⟩ from t = 0 to t = 5
Finding the Arc Length of the Parametric Curve r(t) = ⟨4t², 4t, ln(t)⟩ for t in [1, 5]
Calculate the Arc Length of r(t) = [t^2, t^3, t^4] from t=0 to t=5