Math Problem Statement
Find the length of the curve <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mover> <mi>r</mi> <mo>¯</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>〈</mo> <mn>4</mn> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>,</mo> <mn>4</mn> <mi>t</mi> <mo>,</mo> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>〉</mo> </mrow> </mstyle> </math>
for <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mn>1</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mstyle> </math>
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Parametric Curves
Arc Length
Derivatives
Formulas
Arc length of parametric curve: L = ∫(√[(dx/dt)² + (dy/dt)² + (dz/dt)²] dt)
Derivative of x(t) = 4t² → dx/dt = 8t
Derivative of y(t) = 4t → dy/dt = 4
Derivative of z(t) = ln(t) → dz/dt = 1/t
Theorems
Arc Length Formula for Parametric Curves
Suitable Grade Level
Undergraduate (Calculus II or III)
Related Recommendation
Compute the Arc Length of the Parametric Curve r(t) = ⟨2t, ln t, t^2⟩
Find the Length of the Curve Defined by r(t) = ⟨t^2, t^3, t^4⟩ from t = 0 to t = 5
Finding Arc Length of r(t) = ⟨2t, t^2, 31t^3⟩ from t = 1 to t = 4
Find Arc Length of Parametric Curve r(t) = (16t, 8t^2, 8ln(t))
Arc Length of the Curve r(t) = ⟨3t^2, 2√3t, ln t⟩ for 1 ≤ t ≤ 6