Math Problem Statement

let the curve c be the graph of r(t)=<1+t^2,2-t^2,3+t^3>. find the length along c from (1,2,3) to (2,1,4)

Solution

To find the length along the curve r(t)=1+t2,2t2,3+t3\mathbf{r}(t) = \langle 1 + t^2, 2 - t^2, 3 + t^3 \rangle from the point (1,2,3)(1,2,3) to (2,1,4)(2,1,4), we need to follow these steps:


Step 1: Find the parameter values for the points

  1. At (1,2,3)(1,2,3): x=1+t2,y=2t2,z=3+t3x = 1 + t^2, \quad y = 2 - t^2, \quad z = 3 + t^3 Set each component to the corresponding coordinates: 1=1+t2    t2=0    t=01 = 1 + t^2 \implies t^2 = 0 \implies t = 0 Therefore, t=0t = 0 for the point (1,2,3)(1,2,3).

  2. At (2,1,4)(2,1,4): x=1+t2    2=1+t2    t2=1    t=1(we ignore negative roots)x = 1 + t^2 \implies 2 = 1 + t^2 \implies t^2 = 1 \implies t = 1 \quad (\text{we ignore negative roots}) Therefore, t=1t = 1 for the point (2,1,4)(2,1,4).


Step 2: Compute the length formula

The formula for the arc length of a curve is: L=abr(t)dtL = \int_{a}^{b} \| \mathbf{r}'(t) \| \, dt where a=0a = 0, b=1b = 1, and r(t)\mathbf{r}'(t) is the derivative of r(t)\mathbf{r}(t).


Step 3: Compute r(t)\mathbf{r}'(t)

r(t)=ddt1+t2,2t2,3+t3=2t,2t,3t2\mathbf{r}'(t) = \frac{d}{dt} \langle 1 + t^2, 2 - t^2, 3 + t^3 \rangle = \langle 2t, -2t, 3t^2 \rangle The magnitude of r(t)\mathbf{r}'(t) is: r(t)=(2t)2+(2t)2+(3t2)2=4t2+4t2+9t4\| \mathbf{r}'(t) \| = \sqrt{(2t)^2 + (-2t)^2 + (3t^2)^2} = \sqrt{4t^2 + 4t^2 + 9t^4} =8t2+9t4=t2(8+9t2)=t8+9t2= \sqrt{8t^2 + 9t^4} = \sqrt{t^2(8 + 9t^2)} = t\sqrt{8 + 9t^2}


Step 4: Compute the definite integral

L=01t8+9t2dtL = \int_{0}^{1} t\sqrt{8 + 9t^2} \, dt Let u=8+9t2u = 8 + 9t^2, so du=18tdtdu = 18t \, dt.

When t=0t = 0, u=8u = 8.
When t=1t = 1, u=17u = 17.

Thus, L=118817uduL = \frac{1}{18} \int_{8}^{17} \sqrt{u} \, du The integral of u\sqrt{u} is: udu=23u3/2\int \sqrt{u} \, du = \frac{2}{3} u^{3/2} Applying the bounds: L=118×23[u3/2]817L = \frac{1}{18} \times \frac{2}{3} \left[ u^{3/2} \right]_{8}^{17} L=127[173/283/2]L = \frac{1}{27} \left[ 17^{3/2} - 8^{3/2} \right] Numerically: 173/270.248,83/2=22.62717^{3/2} \approx 70.248, \quad 8^{3/2} = 22.627 L127(70.24822.627)47.621271.764L \approx \frac{1}{27} (70.248 - 22.627) \approx \frac{47.621}{27} \approx 1.764


Final Answer:

L1.764unitsL \approx 1.764 \, \text{units}


Would you like me to go deeper into the substitution process or provide additional examples?

Related Questions

  1. How do you find the arc length if the parameter range isn't explicitly given?
  2. Can we derive arc length for curves in polar coordinates?
  3. What happens when velocity becomes zero in the arc-length formula?
  4. How does parameter substitution simplify arc-length integrals?
  5. How is arc length calculated numerically in more complex cases?

Tip: Always check boundary conditions carefully to ensure substitution aligns with the problem's limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Parametric Curves
Arc Length

Formulas

Arc length formula: L = ∫_{a}^{b} ||r'(t)|| dt
Derivative of a vector function: r'(t) = dr/dt
Substitution method for definite integrals

Theorems

Fundamental Theorem of Calculus
Chain Rule in Differentiation

Suitable Grade Level

Undergraduate Calculus (Calculus II or III)