Math Problem Statement
find the arc-length parameterization for r(t) = <e^2t, e^-2t, 2sqrt(2)t> for t>=0
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Arc-Length Parameterization
Calculus of Parametric Curves
Formulas
Speed function |r'(t)| = sqrt((dr_x/dt)^2 + (dr_y/dt)^2 + (dr_z/dt)^2)
Arc-Length function s(t) = ∫ |r'(u)| du
Theorems
Fundamental Theorem of Calculus
Arc-Length Parameterization Theorem
Suitable Grade Level
College Level - Calculus III
Related Recommendation
Arc Length Parameterization of a Line Segment with Exponential Functions
Arc Length Calculation for the Curve r = (e^t cos(-5t), e^t sin(-5t), e^t)
Arc Length of Vector Function 2t i + e^t j + e^(-t) k from t=0 to t=4
Compute the Arc Length of the Parametric Curve r(t) = ⟨2t, ln t, t^2⟩
Find the Arc Length of Parametric Curve r(t) = ⟨10√2t, e^(10t), e^(-10t)⟩