Math Problem Statement

The fifth Maclaurin polynomial for e^(2x) and e^-(2x) are P(x) = = (((x+3) x + )x+2)x + 2)x + 1 Approximate e-0.98 using P(0.49) and four-digit rounding arithmetic. Compute the absolute and relative error

Solution

To solve this problem, we need to construct the fifth Maclaurin polynomial for e2xe^{2x} and e2xe^{-2x}, then use these polynomials to approximate e0.98e^{-0.98} using P(0.49)P(0.49), and finally compute the absolute and relative errors.

Maclaurin Polynomial for e2xe^{2x}

The Maclaurin series for e2xe^{2x} is given by: e2x=n=0(2x)nn!=1+2x+(2x)22!+(2x)33!+(2x)44!+(2x)55!+e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \frac{(2x)^4}{4!} + \frac{(2x)^5}{5!} + \cdots

The fifth Maclaurin polynomial is: P5(x)=1+2x+2x2+8x33!+16x44!+32x55!P_5(x) = 1 + 2x + 2x^2 + \frac{8x^3}{3!} + \frac{16x^4}{4!} + \frac{32x^5}{5!} P5(x)=1+2x+2x2+8x36+16x424+32x5120P_5(x) = 1 + 2x + 2x^2 + \frac{8x^3}{6} + \frac{16x^4}{24} + \frac{32x^5}{120} P5(x)=1+2x+2x2+4x33+2x43+4x515P_5(x) = 1 + 2x + 2x^2 + \frac{4x^3}{3} + \frac{2x^4}{3} + \frac{4x^5}{15}

Maclaurin Polynomial for e2xe^{-2x}

The Maclaurin series for e2xe^{-2x} is given by: e2x=n=0(2x)nn!=12x+(2x)22!(2x)33!+(2x)44!(2x)55!+e^{-2x} = \sum_{n=0}^{\infty} \frac{(-2x)^n}{n!} = 1 - 2x + \frac{(2x)^2}{2!} - \frac{(2x)^3}{3!} + \frac{(2x)^4}{4!} - \frac{(2x)^5}{5!} + \cdots

The fifth Maclaurin polynomial is: P5(x)=12x+2x28x33!+16x44!32x55!P_5(x) = 1 - 2x + 2x^2 - \frac{8x^3}{3!} + \frac{16x^4}{4!} - \frac{32x^5}{5!} P5(x)=12x+2x28x36+16x42432x5120P_5(x) = 1 - 2x + 2x^2 - \frac{8x^3}{6} + \frac{16x^4}{24} - \frac{32x^5}{120} P5(x)=12x+2x24x33+2x434x515P_5(x) = 1 - 2x + 2x^2 - \frac{4x^3}{3} + \frac{2x^4}{3} - \frac{4x^5}{15}

Approximation of e0.98e^{-0.98} using P(0.49)P(0.49)

To approximate e0.98e^{-0.98}, we use: P5(0.49)=12(0.49)+2(0.49)24(0.49)33+2(0.49)434(0.49)515P_5(0.49) = 1 - 2(0.49) + 2(0.49)^2 - \frac{4(0.49)^3}{3} + \frac{2(0.49)^4}{3} - \frac{4(0.49)^5}{15}

Calculating each term separately: 11 2(0.49)=0.98-2(0.49) = -0.98 2(0.49)2=2(0.2401)=0.48022(0.49)^2 = 2(0.2401) = 0.4802 4(0.49)33=4(0.117649)3=0.4705963=0.156865-\frac{4(0.49)^3}{3} = -\frac{4(0.117649)}{3} = -\frac{0.470596}{3} = -0.156865 2(0.49)43=2(0.05764801)3=0.115296023=0.038432\frac{2(0.49)^4}{3} = \frac{2(0.05764801)}{3} = \frac{0.11529602}{3} = 0.038432 4(0.49)515=4(0.028236441)15=0.11294576415=0.007530-\frac{4(0.49)^5}{15} = -\frac{4(0.028236441)}{15} = -\frac{0.112945764}{15} = -0.007530

Summing these terms: P5(0.49)=10.98+0.48020.156865+0.0384320.007530P_5(0.49) = 1 - 0.98 + 0.4802 - 0.156865 + 0.038432 - 0.007530 P5(0.49)0.373P_5(0.49) \approx 0.373

Exact Value and Errors

The exact value of e0.98e^{-0.98} can be found using a calculator: e0.980.3753e^{-0.98} \approx 0.3753

Absolute Error

Absolute Error=Exact ValueApproximate Value=0.37530.373=0.0023\text{Absolute Error} = | \text{Exact Value} - \text{Approximate Value} | = | 0.3753 - 0.373 | = 0.0023

Relative Error

Relative Error=Absolute ErrorExact Value=0.00230.37530.0061\text{Relative Error} = \frac{\text{Absolute Error}}{\text{Exact Value}} = \frac{0.0023}{0.3753} \approx 0.0061

Summary

  • Approximate Value using P(0.49)P(0.49): 0.3730.373
  • Exact Value of e0.98e^{-0.98}: 0.37530.3753
  • Absolute Error: 0.00230.0023
  • Relative Error: 0.00610.0061

Would you like more details or have any questions?

Related Questions

  1. What is the general form of the Maclaurin series for exe^x?
  2. How does the Taylor series differ from the Maclaurin series?
  3. What are some applications of Maclaurin series in real-world problems?
  4. How can we improve the accuracy of our polynomial approximations?
  5. What are some limitations of using Maclaurin series for approximations?
  6. How do we determine the radius of convergence for a power series?
  7. What is the significance of the fifth-degree polynomial in approximations?
  8. How can we extend these concepts to multivariable functions?

Tip

Always double-check your polynomial coefficients and calculations to ensure accuracy, especially when dealing with approximations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Maclaurin Series
Exponential Functions
Polynomial Approximation
Absolute Error
Relative Error

Formulas

Maclaurin series for exponential functions

Theorems

-

Suitable Grade Level

Advanced High School / College