Math Problem Statement

take antiderivtive of root of 1-9x^2

Solution

To find the antiderivative of 19x2\sqrt{1 - 9x^2}, we can use a trigonometric substitution method.

Step-by-step solution:

We start with the expression:

19x2dx\int \sqrt{1 - 9x^2} \, dx

Notice that 19x21 - 9x^2 suggests a substitution involving sine or cosine. Let's use the following trigonometric substitution:

x=13sin(θ)x = \frac{1}{3} \sin(\theta)

Thus, dx=13cos(θ)dθdx = \frac{1}{3} \cos(\theta) \, d\theta, and we substitute into the integrand.

Step 1: Substitute into the expression

19x2=19(13sin(θ))2=1sin2(θ)=cos2(θ)1 - 9x^2 = 1 - 9\left(\frac{1}{3} \sin(\theta)\right)^2 = 1 - \sin^2(\theta) = \cos^2(\theta)

So, 19x2=cos2(θ)=cos(θ)\sqrt{1 - 9x^2} = \sqrt{\cos^2(\theta)} = \cos(\theta).

Step 2: Update the integral

Now substitute all these into the original integral:

19x2dx=cos(θ)13cos(θ)dθ=13cos2(θ)dθ\int \sqrt{1 - 9x^2} \, dx = \int \cos(\theta) \cdot \frac{1}{3} \cos(\theta) \, d\theta = \frac{1}{3} \int \cos^2(\theta) \, d\theta

Step 3: Simplify the integral

We can use the double angle identity for cosine to simplify cos2(θ)\cos^2(\theta):

cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}

Thus, the integral becomes:

131+cos(2θ)2dθ\frac{1}{3} \int \frac{1 + \cos(2\theta)}{2} \, d\theta

Step 4: Integrate

Now, integrate the expression:

1312(1dθ+cos(2θ)dθ)\frac{1}{3} \cdot \frac{1}{2} \left( \int 1 \, d\theta + \int \cos(2\theta) \, d\theta \right)

=16(θ+sin(2θ)2)+C= \frac{1}{6} \left( \theta + \frac{\sin(2\theta)}{2} \right) + C

Step 5: Back-substitute

Now, we back-substitute θ\theta in terms of xx. Recall that:

x=13sin(θ)sin(θ)=3xx = \frac{1}{3} \sin(\theta) \quad \Rightarrow \quad \sin(\theta) = 3x

Thus, θ=arcsin(3x)\theta = \arcsin(3x).

Also, sin(2θ)=2sin(θ)cos(θ)=2(3x)19x2=6x19x2\sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2(3x) \sqrt{1 - 9x^2} = 6x \sqrt{1 - 9x^2}.

So, the final result is:

16(arcsin(3x)+6x19x22)+C\frac{1}{6} \left( \arcsin(3x) + \frac{6x \sqrt{1 - 9x^2}}{2} \right) + C

Simplifying the constants:

=16arcsin(3x)+x19x22+C= \frac{1}{6} \arcsin(3x) + \frac{x \sqrt{1 - 9x^2}}{2} + C

Final answer:

19x2dx=16arcsin(3x)+x19x22+C\int \sqrt{1 - 9x^2} \, dx = \frac{1}{6} \arcsin(3x) + \frac{x \sqrt{1 - 9x^2}}{2} + C

Would you like any further clarifications or details on this process?


Further questions for you:

  1. How does trigonometric substitution help in simplifying integrals involving square roots?
  2. What is the general form for using trigonometric substitution in integrals of the type a2x2\sqrt{a^2 - x^2}?
  3. Can you explain the significance of the double-angle identity in this solution?
  4. What other methods can be used to approach integrals involving square roots, aside from trigonometric substitution?
  5. How do you back-substitute after performing a trigonometric substitution?

Tip:

When using trigonometric substitution, always look for a structure in the integrand that matches known trigonometric identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Antiderivatives
Trigonometric Substitution

Formulas

Trigonometric Substitution: x = (1/3) sin(θ)
Double Angle Identity: cos^2(θ) = (1 + cos(2θ)) / 2
Antiderivative of cos^2(θ)

Theorems

Fundamental Theorem of Calculus
Trigonometric Substitution Theorem

Suitable Grade Level

Grades 11-12