Math Problem Statement

Find the values of x such that the angle between the vectors

4, 1, −1

, and

1, x, 0

is 45°. (Enter your answers as a comma-separated list.)

Solution

We are given two vectors:

v1=4,1,1andv2=1,x,0\mathbf{v}_1 = \langle 4, 1, -1 \rangle \quad \text{and} \quad \mathbf{v}_2 = \langle 1, x, 0 \rangle

We need to find the values of xx such that the angle between these vectors is 45°.

The formula for the cosine of the angle θ\theta between two vectors v1\mathbf{v}_1 and v2\mathbf{v}_2 is:

cos(θ)=v1v2v1v2\cos(\theta) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| |\mathbf{v}_2|}

Step 1: Dot product v1v2\mathbf{v}_1 \cdot \mathbf{v}_2

The dot product of two vectors v1=a1,b1,c1\mathbf{v}_1 = \langle a_1, b_1, c_1 \rangle and v2=a2,b2,c2\mathbf{v}_2 = \langle a_2, b_2, c_2 \rangle is:

v1v2=a1a2+b1b2+c1c2\mathbf{v}_1 \cdot \mathbf{v}_2 = a_1a_2 + b_1b_2 + c_1c_2

For our vectors v1=4,1,1\mathbf{v}_1 = \langle 4, 1, -1 \rangle and v2=1,x,0\mathbf{v}_2 = \langle 1, x, 0 \rangle, the dot product is:

v1v2=4(1)+1(x)+(1)(0)=4+x\mathbf{v}_1 \cdot \mathbf{v}_2 = 4(1) + 1(x) + (-1)(0) = 4 + x

Step 2: Magnitudes v1|\mathbf{v}_1| and v2|\mathbf{v}_2|

The magnitude of a vector v=a,b,c\mathbf{v} = \langle a, b, c \rangle is given by:

v=a2+b2+c2|\mathbf{v}| = \sqrt{a^2 + b^2 + c^2}

For v1=4,1,1\mathbf{v}_1 = \langle 4, 1, -1 \rangle:

v1=42+12+(1)2=16+1+1=18=32|\mathbf{v}_1| = \sqrt{4^2 + 1^2 + (-1)^2} = \sqrt{16 + 1 + 1} = \sqrt{18} = 3\sqrt{2}

For v2=1,x,0\mathbf{v}_2 = \langle 1, x, 0 \rangle:

v2=12+x2+02=1+x2|\mathbf{v}_2| = \sqrt{1^2 + x^2 + 0^2} = \sqrt{1 + x^2}

Step 3: Applying the cosine formula

We are given that the angle θ\theta between the vectors is 45°, so:

cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}

Now, using the cosine formula:

4+xv1v2=22\frac{4 + x}{|\mathbf{v}_1| |\mathbf{v}_2|} = \frac{\sqrt{2}}{2}

Substitute the magnitudes:

4+x(32)1+x2=22\frac{4 + x}{(3\sqrt{2}) \cdot \sqrt{1 + x^2}} = \frac{\sqrt{2}}{2}

Step 4: Solve for xx

First, multiply both sides of the equation by (32)1+x2(3\sqrt{2}) \cdot \sqrt{1 + x^2}:

4+x=22321+x24 + x = \frac{\sqrt{2}}{2} \cdot 3\sqrt{2} \cdot \sqrt{1 + x^2}

Simplifying the right-hand side:

4+x=31+x24 + x = 3 \cdot \sqrt{1 + x^2}

Now, square both sides to eliminate the square root:

(4+x)2=9(1+x2)(4 + x)^2 = 9(1 + x^2)

Expand both sides:

16+8x+x2=9+9x216 + 8x + x^2 = 9 + 9x^2

Move all terms to one side:

16+8x+x299x2=016 + 8x + x^2 - 9 - 9x^2 = 0

Simplify:

7+8x8x2=07 + 8x - 8x^2 = 0

This is a quadratic equation. Rearranging:

8x28x7=08x^2 - 8x - 7 = 0

Step 5: Solve the quadratic equation

Use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For 8x28x7=08x^2 - 8x - 7 = 0, a=8a = 8, b=8b = -8, and c=7c = -7. Plug these values into the quadratic formula:

x=(8)±(8)24(8)(7)2(8)x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(8)(-7)}}{2(8)}

x=8±64+22416x = \frac{8 \pm \sqrt{64 + 224}}{16}

x=8±28816x = \frac{8 \pm \sqrt{288}}{16}

x=8±12216x = \frac{8 \pm 12\sqrt{2}}{16}

x=2±324x = \frac{2 \pm 3\sqrt{2}}{4}

Thus, the two possible values for xx are:

x=2+324orx=2324x = \frac{2 + 3\sqrt{2}}{4} \quad \text{or} \quad x = \frac{2 - 3\sqrt{2}}{4}

Final Answer:

The values of xx are:

x=2+324,2324x = \frac{2 + 3\sqrt{2}}{4}, \frac{2 - 3\sqrt{2}}{4}

Would you like to see more details or have any questions on this?

Here are some related questions for you:

  1. How do you calculate the angle between two vectors?
  2. What is the geometric interpretation of the dot product?
  3. How do you simplify square roots when solving equations?
  4. What happens if the cosine of the angle is 0 or 1?
  5. How do you solve a quadratic equation using the quadratic formula?

Tip: When solving for angles between vectors, always ensure that you calculate the magnitudes of the vectors correctly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Dot Product
Cosine of the Angle Between Vectors
Quadratic Equations

Formulas

cos(θ) = (v₁ ⋅ v₂) / (|v₁| |v₂|)
Dot Product: v₁ ⋅ v₂ = a₁a₂ + b₁b₂ + c₁c₂
Magnitude of vector v = √(a² + b² + c²)
Quadratic Formula: x = (-b ± √(b² - 4ac)) / 2a

Theorems

Law of Cosines for Vectors
Dot Product Theorem
Quadratic Equation Solution

Suitable Grade Level

Grades 10-12