Math Problem Statement

Sea f(x) = 3 · 5^(2(x-1)^2 - 18) - 75. (a) Hallar el Dom(f). (b) Mostrar que f : Dom(f) → ℝ no es inyectiva. (c) Probar que f : (-∞,1] → ℝ es inyectiva. (d) Hallar la expresión de f^(-1) : Im(f) → (-∞,1].

Solution

Let's solve the problem step by step:

Problem:

Given f(x)=35(2(x1)218)75f(x) = 3 \cdot 5^{(2(x-1)^2 - 18)} - 75, we address the following:


(a) Hallar el Dom(f)\text{Dom}(f):

The domain of f(x)f(x) is determined by analyzing if there are any restrictions on xx for which f(x)f(x) is undefined. In this case, 5(2(x1)218)5^{(2(x-1)^2 - 18)} is always defined for all real xx because 5z5^z is defined for any real zz. Thus, there are no restrictions.

Answer: Dom(f)=R\text{Dom}(f) = \mathbb{R}


(b) Mostrar que f:Dom(f)Rf : \text{Dom}(f) \to \mathbb{R} no es inyectiva:

A function is injective if every f(a)=f(b)f(a) = f(b) implies a=ba = b. Here, note that the term (x1)2(x-1)^2 is symmetric about x=1x = 1, so f(x)f(x) will take the same value for x=ax = a and x=2ax = 2 - a. Thus, f(x)f(x) is not injective over R\mathbb{R}.

Proof: Let x1=0x_1 = 0 and x2=2x_2 = 2: f(0)=352(01)21875=351675f(0) = 3 \cdot 5^{2(0-1)^2 - 18} - 75 = 3 \cdot 5^{-16} - 75 f(2)=352(21)21875=351675f(2) = 3 \cdot 5^{2(2-1)^2 - 18} - 75 = 3 \cdot 5^{-16} - 75 Since f(0)=f(2)f(0) = f(2) but 020 \neq 2, f(x)f(x) is not injective.

Conclusion: f(x)f(x) is not injective on R\mathbb{R}.


(c) Probar que f:(,1]Rf : (-\infty, 1] \to \mathbb{R} es inyectiva:

On the interval (,1](-\infty, 1], (x1)2(x-1)^2 is strictly decreasing because the square of a number gets smaller as x1x \to 1^-. Thus, 2(x1)2182(x-1)^2 - 18 is strictly decreasing, and so is 52(x1)2185^{2(x-1)^2 - 18}. The subtraction of 75 and multiplication by 3 do not change this monotonic behavior.

Proof: Let x1,x2(,1]x_1, x_2 \in (-\infty, 1] with x1<x2x_1 < x_2. Then: (x11)2>(x21)2    2(x11)218>2(x21)218(x_1 - 1)^2 > (x_2 - 1)^2 \implies 2(x_1-1)^2 - 18 > 2(x_2-1)^2 - 18     52(x11)218>52(x21)218    f(x1)>f(x2)\implies 5^{2(x_1-1)^2 - 18} > 5^{2(x_2-1)^2 - 18} \implies f(x_1) > f(x_2) Thus, f(x)f(x) is strictly decreasing on (,1](-\infty, 1] and is injective.

Conclusion: f(x)f(x) is injective on (,1](-\infty, 1].


(d) **Hallar la expresión de ( f^{-1} : \text{Im}(f) \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Domain and range of functions
Injective (one-to-one) and non-injective functions
Inverse functions
Monotonicity

Formulas

Exponential function: a^x
Properties of symmetry in (x - c)^2
Inverse function formula f^(-1)

Theorems

A function is injective if f(a) = f(b) implies a = b.
The domain of an exponential function is all real numbers.

Suitable Grade Level

Undergraduate Mathematics or Advanced High School