Math Problem Statement

If a = 6 and b = -4, find the value of the following expressions: a) -a + b b) a - b c) 2(b - a) d) -ab^2 e) a^2 + b^2 f) 24 ÷ (ab)

Solution

Let's solve each expression step-by-step for a=6a = 6 and b=4b = -4:

a. a+b-a + b

a+b=(6)+(4)=64=10-a + b = -(6) + (-4) = -6 - 4 = -10

b. aba - b

ab=6(4)=6+4=10a - b = 6 - (-4) = 6 + 4 = 10

c. 2(ba)2(b - a)

2(ba)=2((4)6)=2(10)=202(b - a) = 2((-4) - 6) = 2(-10) = -20

d. ab2-ab^2

ab2=(6)(4)2=(6)(16)=96-ab^2 = -(6)(-4)^2 = -(6)(16) = -96

e. a2+b2a^2 + b^2

a2+b2=(6)2+(4)2=36+16=52a^2 + b^2 = (6)^2 + (-4)^2 = 36 + 16 = 52

f. 24÷(ab)24 \div (ab)

24÷(ab)=24÷(6×4)=24÷(24)=124 \div (ab) = 24 \div (6 \times -4) = 24 \div (-24) = -1

Summary of the results:

  • a. a+b=10-a + b = -10
  • b. ab=10a - b = 10
  • c. 2(ba)=202(b - a) = -20
  • d. ab2=96-ab^2 = -96
  • e. a2+b2=52a^2 + b^2 = 52
  • f. 24÷(ab)=124 \div (ab) = -1

Let me know if you'd like further details or have any questions.

Here are 5 related questions for further practice:

  1. What is the value of a3+b3a^3 + b^3 for the same values of aa and bb?
  2. Calculate (ab)2(a - b)^2 for a=6a = 6 and b=4b = -4.
  3. What is the value of a×(b+a)a \times (b + a)?
  4. How does a+b2a + b^2 change if b=0b = 0?
  5. What is the product of (a+b)×(ab)(a + b) \times (a - b)?

Tip: Always check if you need to distribute negatives carefully when simplifying expressions involving subtraction or negatives.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Basic Arithmetic
Exponents

Formulas

Addition and subtraction of integers
Exponentiation of negative numbers
Multiplication and division of numbers

Theorems

Order of operations (PEMDAS)

Suitable Grade Level

Grades 6-8