Math Problem Statement

Do all

The set of mathematical problems in the image, including trigonometry, matrices, and synthetic division.

Solution

Let's go through the problems one by one.

1. Prove that sin1(45)+cos1(35)=π2\sin^{-1} \left(\frac{4}{5}\right) + \cos^{-1} \left(\frac{3}{5}\right) = \frac{\pi}{2}.

Solution:

Given the equation: sin1(45)+cos1(35)\sin^{-1} \left(\frac{4}{5}\right) + \cos^{-1} \left(\frac{3}{5}\right)

We know that: sin1x+cos1x=π2\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}

So, if sin1(45)=θ\sin^{-1} \left(\frac{4}{5}\right) = \theta, then sin(θ)=45\sin(\theta) = \frac{4}{5}. Therefore, by the Pythagorean identity cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta, we have: cos(θ)=1(45)2=35\cos(\theta) = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}

This means: cos1(35)=π2sin1(45)\cos^{-1} \left(\frac{3}{5}\right) = \frac{\pi}{2} - \sin^{-1} \left(\frac{4}{5}\right) Thus: sin1(45)+cos1(35)=π2\sin^{-1} \left(\frac{4}{5}\right) + \cos^{-1} \left(\frac{3}{5}\right) = \frac{\pi}{2} Proven.

2. Find the angle between 5i5i and 2+2i2 + 2i.

Solution:

The angle of a complex number z=x+yiz = x + yi with the positive real axis is given by θ=arg(z)=tan1(yx)\theta = \arg(z) = \tan^{-1} \left(\frac{y}{x}\right).

For 5i5i: θ1=tan1(50)=π2\theta_1 = \tan^{-1} \left(\frac{5}{0}\right) = \frac{\pi}{2}

For 2+2i2 + 2i: θ2=tan1(22)=tan1(1)=π4\theta_2 = \tan^{-1} \left(\frac{2}{2}\right) = \tan^{-1}(1) = \frac{\pi}{4}

The angle between them is: θ=π2π4=π4\theta = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}

3. Solve for xx in 156(12x3)=4x15 - 6\left(\frac{12 - x}{3}\right) = 4x.

Solution:

Start by simplifying the equation: 156(12x3)=4x15 - 6\left(\frac{12 - x}{3}\right) = 4x 156(4x3)=4x15 - 6\left(4 - \frac{x}{3}\right) = 4x 15(242x)=4x15 - (24 - 2x) = 4x 1524+2x=4x15 - 24 + 2x = 4x 9+2x=4x-9 + 2x = 4x 9=2x-9 = 2x x=92x = -\frac{9}{2}

4. For what values of xx is the matrix (A = \begin{pmatrix} 1 & 2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Matrices
Synthetic Division
Complex Numbers
Algebra

Formulas

sin^-1(x) + cos^-1(x) = π/2
tan^-1(y/x)
Synthetic Division for polynomials
Determinant of a 2x2 matrix

Theorems

Inverse Trigonometric Function Theorem
Angle Between Two Vectors
Matrix Equality
Remainder Theorem

Suitable Grade Level

Grades 10-12