Math Problem Statement

Integrate of

integrate 1/(1 + 2sin x) dx

  1. integrate 1/(sin x + cos x) dx

  2. integrate tanh(x) * 1/(cosh(x) + 64sech(x)) dx

integrate 1/(4 + 3cosh(x)) dx

  1. integrate 1/(2 + sin x) dx

integrate 1/(3sin x + 4cos x) dx

  1. integrate sinh(x) * 1/(4tanh(x) - cos echx * sech(x)) dx

  2. integrate 1/(4 + 3sinh(x)) dx

Solution

Let's solve these integrals one by one.

1. 11+2sinxdx\int \frac{1}{1 + 2\sin x} \, dx

We use the Weierstrass substitution t=tan(x2)t = \tan\left(\frac{x}{2}\right), where sinx=2t1+t2\sin x = \frac{2t}{1+t^2} and dx=2dt1+t2dx = \frac{2 \, dt}{1 + t^2}.

Substituting: 11+2sinxdx=11+4t1+t22dt1+t2\int \frac{1}{1 + 2\sin x} \, dx = \int \frac{1}{1 + \frac{4t}{1+t^2}} \cdot \frac{2 \, dt}{1+t^2} Simplifying, and using partial fractions if necessary, this will yield an integral in terms of tt, which can be integrated. The final result can be expressed back in terms of xx.

2. 1sinx+cosxdx\int \frac{1}{\sin x + \cos x} \, dx

Start by multiplying the numerator and denominator by 12\frac{1}{\sqrt{2}}, we have: 1sinx+cosxdx=22sinx+2cosxdx=22(sinx+cosx2)dx\int \frac{1}{\sin x + \cos x} \, dx = \int \frac{\sqrt{2}}{\sqrt{2}\sin x + \sqrt{2}\cos x} \, dx = \int \frac{\sqrt{2}}{\sqrt{2}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right)} \, dx Let u=sinx+cosxu = \sin x + \cos x, du=(cosxsinx)dxdu = (\cos x - \sin x) \, dx. The integral simplifies, and we integrate with respect to uu.

3. tanh(x)cosh(x)+64sech(x)dx\int \frac{\tanh(x)}{\cosh(x) + 64\text{sech}(x)} \, dx

Use the identity tanh(x)=sinh(x)cosh(x)\tanh(x) = \frac{\sinh(x)}{\cosh(x)} and express the integral in terms of u=cosh(x)u = \cosh(x), where du=sinh(x)dxdu = \sinh(x) \, dx. The integral becomes: sinh(x)cosh(x)(cosh(x)+641cosh(x))dx\int \frac{\sinh(x)}{\cosh(x) \left(\cosh(x) + 64 \cdot \frac{1}{\cosh(x)}\right)} \, dx Simplifying and integrating in terms of uu.

4. 14+3cosh(x)dx\int \frac{1}{4 + 3\cosh(x)} \, dx

Let u=tanh(x2)u = \tanh\left(\frac{x}{2}\right), so cosh(x)=1+u21u2\cosh(x) = \frac{1 + u^2}{1 - u^2}, and substitute. Simplify the integral and solve in terms of uu.

5. 12+sinxdx\int \frac{1}{2 + \sin x} \, dx

Similarly to the first integral, use the Weierstrass substitution t=tan(x2)t = \tan\left(\frac{x}{2}\right) and express the integral in terms of tt, then solve and revert back to xx.

6. 13sinx+4cosxdx\int \frac{1}{3\sin x + 4\cos x} \, dx

We can solve this by using the Weierstrass substitution or express 3sinx+4cosx3\sin x + 4\cos x as Rsin(x+α)R\sin(x + \alpha) and then integrate.

7. sinh(x)4tanh(x)cosh(x)sech(x)dx\int \frac{\sinh(x)}{4\tanh(x) - \cosh(x)\text{sech}(x)} \, dx

Simplify using identities for hyperbolic functions, then substitute u=tanh(x)u = \tanh(x), and integrate in terms of uu.

8. 14+3sinh(x)dx\int \frac{1}{4 + 3\sinh(x)} \, dx

Use a similar substitution as with the cosh(x)\cosh(x) integral, but this time with u=tanh(x2)u = \tanh\left(\frac{x}{2}\right).

Detailed Solution Example:

Let's solve one in more detail:

4. 14+3cosh(x)dx\int \frac{1}{4 + 3\cosh(x)} \, dx

Let u=tanh(x2)u = \tanh\left(\frac{x}{2}\right), then: cosh(x)=1+u21u2,dx=2du1u2\cosh(x) = \frac{1 + u^2}{1 - u^2}, \quad dx = \frac{2 \, du}{1-u^2} The integral becomes: 14+31+u21u22du1u2\int \frac{1}{4 + 3 \cdot \frac{1+u^2}{1-u^2}} \cdot \frac{2 \, du}{1-u^2} Simplify the expression and integrate with respect to uu. The result can be converted back to xx.

Would you like further details or have any questions on these integrals? Here are five related questions:

  1. How does Weierstrass substitution help in trigonometric integrals?
  2. Can you explain the integration of hyperbolic functions?
  3. What is the significance of partial fractions in integral calculus?
  4. How can the method of substitution simplify complex integrals?
  5. What are common trigonometric identities used in integration?

Tip: For integrals involving trigonometric functions, always consider simplifying using identities or substitutions that can convert the expression into a more manageable form.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitutions
Hyperbolic Functions

Formulas

Weierstrass substitution
Integration formulas for hyperbolic functions

Theorems

-

Suitable Grade Level

Advanced Undergraduate