Math Problem Statement

Solve the following integrals: 1. ∫e^(3x)dx, 2. ∫2xe^(x^2 + 1)dx, 3. ∫√(x + 2)dx, 4. ∫√(3x + 4)dx, 5. ∫x cos(x^2)dx

Solution

Here are the solutions to the integrals provided in the image:

1. e3xdx\int e^{3x} \, dx

The integral of ekxe^{kx} is 1kekx+C\frac{1}{k} e^{kx} + C.

e3xdx=13e3x+C\int e^{3x} \, dx = \frac{1}{3} e^{3x} + C


2. 2xex2+1dx\int 2x e^{x^2 + 1} \, dx

Let u=x2+1u = x^2 + 1. Then, du=2xdxdu = 2x \, dx.

2xex2+1dx=eudu=eu+C=ex2+1+C\int 2x e^{x^2 + 1} \, dx = \int e^u \, du = e^u + C = e^{x^2 + 1} + C


3. x+2dx\int \sqrt{x + 2} \, dx

Let u=x+2u = x + 2. Then, du=dxdu = dx, and the integral becomes:

x+2dx=u1/2du=23u3/2+C=23(x+2)3/2+C\int \sqrt{x + 2} \, dx = \int u^{1/2} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (x + 2)^{3/2} + C


4. 3x+4dx\int \sqrt{3x + 4} \, dx

Let u=3x+4u = 3x + 4. Then, du=3dxdu = 3 \, dx, or dx=du3dx = \frac{du}{3}. The integral becomes:

3x+4dx=u13du=13u1/2du\int \sqrt{3x + 4} \, dx = \int \sqrt{u} \cdot \frac{1}{3} \, du = \frac{1}{3} \int u^{1/2} \, du

=1323u3/2+C=29(3x+4)3/2+C= \frac{1}{3} \cdot \frac{2}{3} u^{3/2} + C = \frac{2}{9} (3x + 4)^{3/2} + C


5. xcos(x2)dx\int x \cos(x^2) \, dx

Let u=x2u = x^2. Then, du=2xdxdu = 2x \, dx, or du2=xdx\frac{du}{2} = x \, dx. The integral becomes:

xcos(x2)dx=12cos(u)du=12sin(u)+C=12sin(x2)+C\int x \cos(x^2) \, dx = \frac{1}{2} \int \cos(u) \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(x^2) + C


Let me know if you would like further explanation for any step or additional details!

Related Questions:

  1. How do substitution methods work in integrals?
  2. What are the rules for integrating exponential functions?
  3. How is trigonometric substitution applied in integration?
  4. How can definite integrals be calculated for these problems?
  5. What are some practical applications of these integrals in physics or engineering?

Tip:

Always check if a substitution can simplify your integral, especially when dealing with compositions of functions like ex2e^{x^2} or x+2\sqrt{x+2}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method
Exponential Functions
Square Root Functions
Trigonometric Functions

Formulas

∫e^(kx) dx = (1/k) e^(kx) + C
∫u^n du = (u^(n+1))/(n+1) + C for n ≠ -1
∫cos(u) du = sin(u) + C

Theorems

Fundamental Theorem of Calculus
Chain Rule for Differentiation (used in reverse for substitution)

Suitable Grade Level

Grades 11-12 or college calculus level