Math Problem Statement

Solution

Let's solve each of the integrals given in the image one by one.

  1. 14exxdx\int_1^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx

    Let u=xu = \sqrt{x}. Then du=12xdxdu = \frac{1}{2\sqrt{x}} dx or dx=2xdu=2ududx = 2\sqrt{x} \, du = 2u \, du. When x=1x = 1, u=1u = 1. When x=4x = 4, u=2u = 2.

    The integral becomes: 14exxdx=12euu2udu=212eudu\int_1^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx = \int_1^2 \frac{e^u}{u} \cdot 2u \, du = 2 \int_1^2 e^u \, du 212eudu=2[eu]12=2(e2e1)=2(e2e)2 \int_1^2 e^u \, du = 2 \left[ e^u \right]_1^2 = 2(e^2 - e^1) = 2(e^2 - e)

  2. 1eln2xdx\int_1^e \ln^2 x \, dx

    Let u=lnxu = \ln x. Then du=1xdxdu = \frac{1}{x} dx or dx=xdudx = x \, du. When x=1x = 1, u=0u = 0. When x=ex = e, u=1u = 1.

    The integral becomes: 1eln2xdx=01u2eudu\int_1^e \ln^2 x \, dx = \int_0^1 u^2 e^u \, du

    Using integration by parts, let v=u2v = u^2 and dw=eududw = e^u \, du. Then, dv=2ududv = 2u \, du and w=euw = e^u. u2eudu=u2eu2ueudu\int u^2 e^u \, du = u^2 e^u - \int 2u e^u \, du The remaining integral again requires integration by parts. Let v=2uv = 2u and dw=eududw = e^u \, du. Then, dv=2dudv = 2 \, du and w=euw = e^u. 2ueudu=2ueu2eudu=2ueu2eu\int 2u e^u \, du = 2u e^u - \int 2 e^u \, du = 2u e^u - 2e^u So, u2eudu=u2eu(2ueu2eu)=u2eu2ueu+2eu\int u^2 e^u \, du = u^2 e^u - (2u e^u - 2e^u) = u^2 e^u - 2u e^u + 2e^u Evaluating from 0 to 1: [u2eu2ueu+2eu]01=(12e121e1+2e1)(02e020e0+2e0)\left[ u^2 e^u - 2u e^u + 2e^u \right]_0^1 = (1^2 e^1 - 2 \cdot 1 \cdot e^1 + 2e^1) - (0^2 e^0 - 2 \cdot 0 \cdot e^0 + 2e^0) =(e2e+2e)(00+2)=ee+2=e+22=e1= (e - 2e + 2e) - (0 - 0 + 2) = e - e + 2 = e + 2 - 2 = e - 1

  3. 03x2dx9x2\int_0^3 \frac{x^2 \, dx}{\sqrt{9 - x^2}}

    Let x=3sintx = 3 \sin t. Then dx=3costdtdx = 3 \cos t \, dt. When x=0x = 0, t=0t = 0. When x=3x = 3, t=π2t = \frac{\pi}{2}.

    The integral becomes: 03x2dx9x2=0π/2(3sint)23costdt99sin2t=270π/2sin2tcostdt9cos2t\int_0^3 \frac{x^2 \, dx}{\sqrt{9 - x^2}} = \int_0^{\pi/2} \frac{(3 \sin t)^2 \cdot 3 \cos t \, dt}{\sqrt{9 - 9 \sin^2 t}} = 27 \int_0^{\pi/2} \frac{\sin^2 t \cos t \, dt}{\sqrt{9 \cos^2 t}} =270π/2sin2tcostdt3cost=90π/2sin2tdt= 27 \int_0^{\pi/2} \frac{\sin^2 t \cos t \, dt}{3 \cos t} = 9 \int_0^{\pi/2} \sin^2 t \, dt Using the identity sin2t=1cos(2t)2\sin^2 t = \frac{1 - \cos(2t)}{2}, =90π/21cos(2t)2dt=92[tsin(2t)2]0π/2= 9 \int_0^{\pi/2} \frac{1 - \cos(2t)}{2} \, dt = \frac{9}{2} \left[ t - \frac{\sin(2t)}{2} \right]_0^{\pi/2} =92[π20]=9π4= \frac{9}{2} \left[ \frac{\pi}{2} - 0 \right] = \frac{9\pi}{4}

  4. π/4π/2cos4xdxsin6x\int_{\pi/4}^{\pi/2} \frac{\cos^4 x \, dx}{\sin^6 x}

    Rewrite

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometry

Formulas

Integration by substitution
Integration by parts
Trigonometric substitution

Theorems

-

Suitable Grade Level

Advanced High School