Let's solve each of the integrals given in the image one by one.
∫14xexdx
Let u=x. Then du=2x1dx or dx=2xdu=2udu.
When x=1, u=1. When x=4, u=2.
The integral becomes:
∫14xexdx=∫12ueu⋅2udu=2∫12eudu2∫12eudu=2[eu]12=2(e2−e1)=2(e2−e)
∫1eln2xdx
Let u=lnx. Then du=x1dx or dx=xdu.
When x=1, u=0. When x=e, u=1.
The integral becomes:
∫1eln2xdx=∫01u2eudu
Using integration by parts, let v=u2 and dw=eudu. Then, dv=2udu and w=eu.
∫u2eudu=u2eu−∫2ueudu
The remaining integral again requires integration by parts. Let v=2u and dw=eudu. Then, dv=2du and w=eu.
∫2ueudu=2ueu−∫2eudu=2ueu−2eu
So,
∫u2eudu=u2eu−(2ueu−2eu)=u2eu−2ueu+2eu
Evaluating from 0 to 1:
[u2eu−2ueu+2eu]01=(12e1−2⋅1⋅e1+2e1)−(02e0−2⋅0⋅e0+2e0)=(e−2e+2e)−(0−0+2)=e−e+2=e+2−2=e−1
∫039−x2x2dx
Let x=3sint. Then dx=3costdt.
When x=0, t=0. When x=3, t=2π.
The integral becomes:
∫039−x2x2dx=∫0π/29−9sin2t(3sint)2⋅3costdt=27∫0π/29cos2tsin2tcostdt=27∫0π/23costsin2tcostdt=9∫0π/2sin2tdt
Using the identity sin2t=21−cos(2t),
=9∫0π/221−cos(2t)dt=29[t−2sin(2t)]0π/2=29[2π−0]=49π
∫π/4π/2sin6xcos4xdx
Rewrite
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus Integration Trigonometry
Formulas
Integration by substitution Integration by parts Trigonometric substitution