Math Problem Statement

(4.01877572016461×10^−6) + 0.64722784850823+0.0534899048353909+0.00486271862139918+0.000221032664609053

Solution

Let's solve the given expression:

(4.01877572016461×106)+0.64722784850823+0.0534899048353909+0.00486271862139918+0.000221032664609053(4.01877572016461 \times 10^{-6}) + 0.64722784850823 + 0.0534899048353909 + 0.00486271862139918 + 0.000221032664609053

First, calculate 4.01877572016461×1064.01877572016461 \times 10^{-6}, which is approximately:

4.01877572016461×106=0.000004018775720164614.01877572016461 \times 10^{-6} = 0.00000401877572016461

Now, add all the terms together:

0.00000401877572016461+0.64722784850823+0.0534899048353909+0.00486271862139918+0.0002210326646090530.00000401877572016461 + 0.64722784850823 + 0.0534899048353909 + 0.00486271862139918 + 0.000221032664609053

Summing them up:

0.70580452340538970.7058045234053897

So, the final result is approximately:

0.70580452340.7058045234

Would you like a more detailed breakdown or have any questions about the steps?


Here are 5 related questions:

  1. How does scientific notation work in summing numbers?
  2. How do you add very small numbers (like 10610^{-6}) to larger numbers without losing accuracy?
  3. What are the rounding rules for decimal places?
  4. How can precision affect calculations in scientific contexts?
  5. How can calculators or programming tools help ensure accuracy in complex additions?

Tip: When working with numbers in different orders of magnitude, ensure that your calculator or software maintains enough precision to avoid rounding errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Scientific Notation
Addition
Decimal Numbers

Formulas

Scientific Notation: a × 10^n
Addition of Decimal Numbers: Sum = a + b + c + ...
Conversion from Scientific Notation: a × 10^n = a / 10^(-n)

Theorems

-

Suitable Grade Level

Grades 6-8