Math Problem Statement

Omar walked 7/8 of a mile on Friday and 1/2 of a mile on Saturday. How far did he walk on the two days combined?

Solution

To find how far Omar walked on the two days combined, we simply add the two distances together:

78+12\frac{7}{8} + \frac{1}{2}

First, we need to get a common denominator. The denominators are 8 and 2, and the least common denominator (LCD) is 8.

Now, we rewrite 12\frac{1}{2} with a denominator of 8:

12=48\frac{1}{2} = \frac{4}{8}

So, the addition becomes:

78+48=7+48=118\frac{7}{8} + \frac{4}{8} = \frac{7 + 4}{8} = \frac{11}{8}

This is an improper fraction, which we can convert into a mixed number:

118=138\frac{11}{8} = 1 \frac{3}{8}

Thus, Omar walked a total of 1381 \frac{3}{8} miles on Friday and Saturday combined.

Would you like more details or have any questions?

Related Questions:

  1. How do you add fractions with different denominators?
  2. What is an improper fraction, and how do you convert it to a mixed number?
  3. How can you subtract fractions with different denominators?
  4. How would you multiply fractions?
  5. What is the difference between a proper and an improper fraction?

Tip: Always look for the least common denominator (LCD) when adding or subtracting fractions. This simplifies the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Addition of Fractions
Improper Fractions
Mixed Numbers

Formulas

a/b + c/d = (a*d + b*c) / (b*d)

Theorems

Least Common Denominator (LCD) Theorem

Suitable Grade Level

Grades 4-6