Math Problem Statement
Find the sum of mixed numbers for the given exercises (1–12). Example: 2 10/12 + 3 3/12.
Solution
Let's go through each sum step by step.
1. 21210+3123
- Whole numbers: 2+3=5
- Fractions: 1210+123=1213=1121
- Final sum: 5+1121=6121
2. 183+386
- Whole numbers: 1+3=4
- Fractions: 83+86=89=181
- Final sum: 4+181=581
3. 5104+4102
- Whole numbers: 5+4=9
- Fractions: 104+102=106=53 (simplified)
- Final sum: 953
4. 1062+63
- Whole numbers: 10
- Fractions: 62+63=65
- Final sum: 1065
5. 3123+6128
- Whole numbers: 3+6=9
- Fractions: 123+128=1211
- Final sum: 91211
6. 152+351
- Whole numbers: 1+3=4
- Fractions: 52+51=53
- Final sum: 453
7. 21610+3169
- Whole numbers: 2+3=5
- Fractions: 1610+169=1619=1163
- Final sum: 5+1163=6163
8. 262+365
- Whole numbers: 2+3=5
- Fractions: 62+65=67=161
- Final sum: 5+161=661
9. 443+242
- Whole numbers: 4+2=6
- Fractions: 43+42=45=141
- Final sum: 6+141=741
10. 1109+3102
- Whole numbers: 1+3=4
- Fractions: 109+102=1011=1101
- Final sum: 4+1101=5101
11. 1128+3125
- Whole numbers: 1+3=4
- Fractions: 128+125=1213=1121
- Final sum: 4+1121=5121
12. 11611+2165
- Whole numbers: 1+2=3
- Fractions: 1611+165=1616=1
- Final sum: 3+1=4
Summary of Answers:
- 6121
- 581
- 953
- 1065
- 91211
- 453
- 6163
- 661
- 741
- 5101
- 5121
- 4
Would you like a detailed explanation for any specific problem?
Further Questions:
- How do you convert improper fractions to mixed numbers?
- What is the least common denominator, and why is it useful?
- How do you simplify fractions in a sum?
- Can you explain how to add mixed numbers with different denominators?
- What are real-world applications of mixed number addition?
Tip:
When adding mixed numbers, always simplify fractions before adding to make the calculations easier.