Math Problem Statement

Find the sum of mixed numbers for the given exercises (1–12). Example: 2 10/12 + 3 3/12.

Solution

Let's go through each sum step by step.

1. 21012+33122 \frac{10}{12} + 3 \frac{3}{12}

  • Whole numbers: 2+3=52 + 3 = 5
  • Fractions: 1012+312=1312=1112\frac{10}{12} + \frac{3}{12} = \frac{13}{12} = 1 \frac{1}{12}
  • Final sum: 5+1112=61125 + 1 \frac{1}{12} = 6 \frac{1}{12}

2. 138+3681 \frac{3}{8} + 3 \frac{6}{8}

  • Whole numbers: 1+3=41 + 3 = 4
  • Fractions: 38+68=98=118\frac{3}{8} + \frac{6}{8} = \frac{9}{8} = 1 \frac{1}{8}
  • Final sum: 4+118=5184 + 1 \frac{1}{8} = 5 \frac{1}{8}

3. 5410+42105 \frac{4}{10} + 4 \frac{2}{10}

  • Whole numbers: 5+4=95 + 4 = 9
  • Fractions: 410+210=610=35\frac{4}{10} + \frac{2}{10} = \frac{6}{10} = \frac{3}{5} (simplified)
  • Final sum: 9359 \frac{3}{5}

4. 1026+3610 \frac{2}{6} + \frac{3}{6}

  • Whole numbers: 1010
  • Fractions: 26+36=56\frac{2}{6} + \frac{3}{6} = \frac{5}{6}
  • Final sum: 105610 \frac{5}{6}

5. 3312+68123 \frac{3}{12} + 6 \frac{8}{12}

  • Whole numbers: 3+6=93 + 6 = 9
  • Fractions: 312+812=1112\frac{3}{12} + \frac{8}{12} = \frac{11}{12}
  • Final sum: 911129 \frac{11}{12}

6. 125+3151 \frac{2}{5} + 3 \frac{1}{5}

  • Whole numbers: 1+3=41 + 3 = 4
  • Fractions: 25+15=35\frac{2}{5} + \frac{1}{5} = \frac{3}{5}
  • Final sum: 4354 \frac{3}{5}

7. 21016+39162 \frac{10}{16} + 3 \frac{9}{16}

  • Whole numbers: 2+3=52 + 3 = 5
  • Fractions: 1016+916=1916=1316\frac{10}{16} + \frac{9}{16} = \frac{19}{16} = 1 \frac{3}{16}
  • Final sum: 5+1316=63165 + 1 \frac{3}{16} = 6 \frac{3}{16}

8. 226+3562 \frac{2}{6} + 3 \frac{5}{6}

  • Whole numbers: 2+3=52 + 3 = 5
  • Fractions: 26+56=76=116\frac{2}{6} + \frac{5}{6} = \frac{7}{6} = 1 \frac{1}{6}
  • Final sum: 5+116=6165 + 1 \frac{1}{6} = 6 \frac{1}{6}

9. 434+2244 \frac{3}{4} + 2 \frac{2}{4}

  • Whole numbers: 4+2=64 + 2 = 6
  • Fractions: 34+24=54=114\frac{3}{4} + \frac{2}{4} = \frac{5}{4} = 1 \frac{1}{4}
  • Final sum: 6+114=7146 + 1 \frac{1}{4} = 7 \frac{1}{4}

10. 1910+32101 \frac{9}{10} + 3 \frac{2}{10}

  • Whole numbers: 1+3=41 + 3 = 4
  • Fractions: 910+210=1110=1110\frac{9}{10} + \frac{2}{10} = \frac{11}{10} = 1 \frac{1}{10}
  • Final sum: 4+1110=51104 + 1 \frac{1}{10} = 5 \frac{1}{10}

11. 1812+35121 \frac{8}{12} + 3 \frac{5}{12}

  • Whole numbers: 1+3=41 + 3 = 4
  • Fractions: 812+512=1312=1112\frac{8}{12} + \frac{5}{12} = \frac{13}{12} = 1 \frac{1}{12}
  • Final sum: 4+1112=51124 + 1 \frac{1}{12} = 5 \frac{1}{12}

12. 11116+25161 \frac{11}{16} + 2 \frac{5}{16}

  • Whole numbers: 1+2=31 + 2 = 3
  • Fractions: 1116+516=1616=1\frac{11}{16} + \frac{5}{16} = \frac{16}{16} = 1
  • Final sum: 3+1=43 + 1 = 4

Summary of Answers:

  1. 61126 \frac{1}{12}
  2. 5185 \frac{1}{8}
  3. 9359 \frac{3}{5}
  4. 105610 \frac{5}{6}
  5. 911129 \frac{11}{12}
  6. 4354 \frac{3}{5}
  7. 63166 \frac{3}{16}
  8. 6166 \frac{1}{6}
  9. 7147 \frac{1}{4}
  10. 51105 \frac{1}{10}
  11. 51125 \frac{1}{12}
  12. 44

Would you like a detailed explanation for any specific problem?

Further Questions:

  1. How do you convert improper fractions to mixed numbers?
  2. What is the least common denominator, and why is it useful?
  3. How do you simplify fractions in a sum?
  4. Can you explain how to add mixed numbers with different denominators?
  5. What are real-world applications of mixed number addition?

Tip:

When adding mixed numbers, always simplify fractions before adding to make the calculations easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Addition of Mixed Numbers
Simplification of Improper Fractions
Common Denominators

Formulas

Convert mixed numbers to improper fractions
Find a common denominator for fractions
Simplify improper fractions to mixed numbers

Theorems

Basic Fraction Addition

Suitable Grade Level

Grades 4-6