Math Problem Statement

Solve the absolute value equations and inequalities provided in the uploaded image.

Solution

Let's analyze the equations in the image and solve them step by step. These are absolute value equations and inequalities involving variable xx. I will interpret each one and provide detailed solutions:

  1. 7+x=2|7 + x| = 2 &\text{The absolute value equation implies:} \\ &7 + x = 2 \quad \text{or} \quad 7 + x = -2 \\ &\text{Solving each case:} \\ &x = 2 - 7 = -5 \quad \text{and} \quad x = -2 - 7 = -9 \\ &\boxed{x = -5 \text{ or } x = -9.} \end{aligned}$$
  2. 5+x=2x+1|5 + x| = |2x + 1| &\text{This implies:} \\ &5 + x = 2x + 1 \quad \text{or} \quad 5 + x = -(2x + 1) \\ &\text{Case 1: } 5 + x = 2x + 1 \quad \Rightarrow \quad x = 4. \\ &\text{Case 2: } 5 + x = -2x - 1 \quad \Rightarrow \quad 3x = -6 \quad \Rightarrow \quad x = -2. \\ &\boxed{x = 4 \text{ or } x = -2.} \end{aligned}$$
  3. 3x4<3|3x - 4| < 3 &\text{The inequality implies:} \\ &-3 < 3x - 4 < 3 \\ &\text{Solving: } -3 + 4 < 3x < 3 + 4 \quad \Rightarrow \quad 1 < 3x < 7 \\ &\text{Dividing through by 3: } \frac{1}{3} < x < \frac{7}{3}. \\ &\boxed{\frac{1}{3} < x < \frac{7}{3}.} \end{aligned}$$
  4. 5x14|5x - 1| \geq 4 &\text{The inequality implies:} \\ &5x - 1 \geq 4 \quad \text{or} \quad 5x - 1 \leq -4 \\ &\text{Case 1: } 5x \geq 5 \quad \Rightarrow \quad x \geq 1. \\ &\text{Case 2: } 5x \leq -3 \quad \Rightarrow \quad x \leq -\frac{3}{5}. \\ &\boxed{x \geq 1 \text{ or } x \leq -\frac{3}{5}.} \end{aligned}$$
  5. x22x+32=2|x^2 - 2x + 3| - 2 = 2 &\text{Rewrite as: } |x^2 - 2x + 3| = 4. \\ &\text{This implies: } x^2 - 2x + 3 = 4 \quad \text{or} \quad x^2 - 2x + 3 = -4. \\ &\text{Case 1: } x^2 - 2x - 1 = 0. \\ &\text{Solve using quadratic formula: } x = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}. \\ &\text{Case 2: } x^2 - 2x + 7 = 0 \quad \text{(No real solutions, as discriminant is negative).} \\ &\boxed{x = 1 + \sqrt{2} \text{ or } x = 1 - \sqrt{2}.} \end{aligned}$$
  6. 2x7+357|\frac{2x}{7} + 3| \geq \frac{5}{7} &\text{The inequality implies:} \\ &\frac{2x}{7} + 3 \geq \frac{5}{7} \quad \text{or} \quad \frac{2x}{7} + 3 \leq -\frac{5}{7} \\ &\text{Case 1: } \frac{2x}{7} \geq -\frac{16}{7} \quad \Rightarrow \quad x \geq -8. \\ &\text{Case 2: } \frac{2x}{7} \leq -\frac{26}{7} \quad \Rightarrow \quad x \leq -13. \\ &\boxed{x \geq -8 \text{ or } x \leq -13.} \end{aligned}$$

Would you like further clarification on any solution? Here are five related questions:

  1. How do we graph absolute value equations or inequalities on a number line?
  2. What are the common methods to solve quadratic equations like in question 5?
  3. How can inequalities be solved when involving fractions or multiple variables?
  4. What are the properties of absolute values used in these solutions?
  5. How can we verify the solutions of absolute value equations?

Tip: Always check your solutions by substituting them back into the original equation or inequality to ensure correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Absolute Value Equations
Absolute Value Inequalities
Linear Equations
Quadratic Equations

Formulas

|x| = a implies x = a or x = -a
|x| < a implies -a < x < a
|x| ≥ a implies x ≥ a or x ≤ -a
Quadratic formula: x = [-b ± sqrt(b² - 4ac)] / 2a

Theorems

Properties of Absolute Value
Solution of Linear and Quadratic Equations

Suitable Grade Level

Grades 8-12