Math Problem Statement
Solution
Let's analyze the equations in the image and solve them step by step. These are absolute value equations and inequalities involving variable . I will interpret each one and provide detailed solutions:
- &\text{The absolute value equation implies:} \\ &7 + x = 2 \quad \text{or} \quad 7 + x = -2 \\ &\text{Solving each case:} \\ &x = 2 - 7 = -5 \quad \text{and} \quad x = -2 - 7 = -9 \\ &\boxed{x = -5 \text{ or } x = -9.} \end{aligned}$$
- &\text{This implies:} \\ &5 + x = 2x + 1 \quad \text{or} \quad 5 + x = -(2x + 1) \\ &\text{Case 1: } 5 + x = 2x + 1 \quad \Rightarrow \quad x = 4. \\ &\text{Case 2: } 5 + x = -2x - 1 \quad \Rightarrow \quad 3x = -6 \quad \Rightarrow \quad x = -2. \\ &\boxed{x = 4 \text{ or } x = -2.} \end{aligned}$$
- &\text{The inequality implies:} \\ &-3 < 3x - 4 < 3 \\ &\text{Solving: } -3 + 4 < 3x < 3 + 4 \quad \Rightarrow \quad 1 < 3x < 7 \\ &\text{Dividing through by 3: } \frac{1}{3} < x < \frac{7}{3}. \\ &\boxed{\frac{1}{3} < x < \frac{7}{3}.} \end{aligned}$$
- &\text{The inequality implies:} \\ &5x - 1 \geq 4 \quad \text{or} \quad 5x - 1 \leq -4 \\ &\text{Case 1: } 5x \geq 5 \quad \Rightarrow \quad x \geq 1. \\ &\text{Case 2: } 5x \leq -3 \quad \Rightarrow \quad x \leq -\frac{3}{5}. \\ &\boxed{x \geq 1 \text{ or } x \leq -\frac{3}{5}.} \end{aligned}$$
- &\text{Rewrite as: } |x^2 - 2x + 3| = 4. \\ &\text{This implies: } x^2 - 2x + 3 = 4 \quad \text{or} \quad x^2 - 2x + 3 = -4. \\ &\text{Case 1: } x^2 - 2x - 1 = 0. \\ &\text{Solve using quadratic formula: } x = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}. \\ &\text{Case 2: } x^2 - 2x + 7 = 0 \quad \text{(No real solutions, as discriminant is negative).} \\ &\boxed{x = 1 + \sqrt{2} \text{ or } x = 1 - \sqrt{2}.} \end{aligned}$$
- &\text{The inequality implies:} \\ &\frac{2x}{7} + 3 \geq \frac{5}{7} \quad \text{or} \quad \frac{2x}{7} + 3 \leq -\frac{5}{7} \\ &\text{Case 1: } \frac{2x}{7} \geq -\frac{16}{7} \quad \Rightarrow \quad x \geq -8. \\ &\text{Case 2: } \frac{2x}{7} \leq -\frac{26}{7} \quad \Rightarrow \quad x \leq -13. \\ &\boxed{x \geq -8 \text{ or } x \leq -13.} \end{aligned}$$
Would you like further clarification on any solution? Here are five related questions:
- How do we graph absolute value equations or inequalities on a number line?
- What are the common methods to solve quadratic equations like in question 5?
- How can inequalities be solved when involving fractions or multiple variables?
- What are the properties of absolute values used in these solutions?
- How can we verify the solutions of absolute value equations?
Tip: Always check your solutions by substituting them back into the original equation or inequality to ensure correctness.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Absolute Value Equations
Absolute Value Inequalities
Linear Equations
Quadratic Equations
Formulas
|x| = a implies x = a or x = -a
|x| < a implies -a < x < a
|x| ≥ a implies x ≥ a or x ≤ -a
Quadratic formula: x = [-b ± sqrt(b² - 4ac)] / 2a
Theorems
Properties of Absolute Value
Solution of Linear and Quadratic Equations
Suitable Grade Level
Grades 8-12