Math Problem Statement

An 8 × 1 multiplexer has inputs A, B, and C connected to selection inputs of S2, S1, and S0 respectively. The data inputs I0 through I7 are as follows: I1 = I2 = 0, I3 = I7 = 1, I4 = I5 = D, and I0 = I6 = D̅. Find the output equation Y.

Solution

This problem involves an 8-to-1 multiplexer where the selection inputs S2,S1,S0S_2, S_1, S_0 are connected to A,B,CA, B, C, respectively, and the data inputs I0I_0 to I7I_7 are given specific values based on the problem.

Problem Breakdown:

  1. Inputs:

    • Selection lines: S2=AS_2 = A, S1=BS_1 = B, S0=CS_0 = C.
    • Data inputs: I1=I2=0,I3=I7=1,I4=I5=D,I0=I6=D.I_1 = I_2 = 0, \quad I_3 = I_7 = 1, \quad I_4 = I_5 = D, \quad I_0 = I_6 = \overline{D}.
  2. Multiplexer Function:

    • The output of an 8×18 \times 1 multiplexer is determined by the values of the selection lines S2,S1,S0S_2, S_1, S_0, which select one of the inputs I0I_0 to I7I_7.
  3. Output Expression:

    • Based on the values of S2,S1,S0S_2, S_1, S_0, the corresponding input line is selected, and the output YY is equal to that input.

Output Equation:

The output YY can be expressed in terms of the selection inputs A,B,CA, B, C (or S2,S1,S0S_2, S_1, S_0):

Y=I0ABC+I1ABC+I2ABC++I7ABC.Y = I_0 \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} + I_1 \cdot \overline{A} \cdot \overline{B} \cdot C + I_2 \cdot \overline{A} \cdot B \cdot \overline{C} + \dots + I_7 \cdot A \cdot B \cdot C.

Substituting the values of I0I_0 to I7I_7:

Y=DABC+0ABC+0ABC+1ABC+DABC+DABC+DABC+1ABC.Y = \overline{D} \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} + 0 \cdot \overline{A} \cdot \overline{B} \cdot C + 0 \cdot \overline{A} \cdot B \cdot \overline{C} + 1 \cdot \overline{A} \cdot B \cdot C + D \cdot A \cdot \overline{B} \cdot \overline{C} + D \cdot A \cdot \overline{B} \cdot C + \overline{D} \cdot A \cdot B \cdot \overline{C} + 1 \cdot A \cdot B \cdot C.

Simplifying, YY becomes:

Y=DABC+ABC+DAB+DABC+ABC.Y = \overline{D} \cdot \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + D \cdot A \cdot \overline{B} + \overline{D} \cdot A \cdot B \cdot \overline{C} + A \cdot B \cdot C.


Do you want step-by-step simplification for the final equation or more clarification?


5 Related Questions:

  1. How does a multiplexer work in digital circuits?
  2. What are the advantages of using multiplexers in logic design?
  3. How can the Boolean expression for a multiplexer be further simplified using Karnaugh maps?
  4. What is the role of the selection inputs S2,S1,S0S_2, S_1, S_0 in determining the output?
  5. How would the output change if the data input values were different?

Tip:

When solving multiplexer problems, always write the selection logic and data inputs clearly, as this ensures correct substitution and simplifies Boolean expression derivation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Digital Logic Design
Multiplexers
Boolean Algebra

Formulas

Y = I0 · Ȳ · B̅ · C̅ + I1 · Ȳ · B̅ · C + I2 · Ȳ · B · C̅ + ... + I7 · A · B · C

Theorems

Boolean Multiplexing Logic

Suitable Grade Level

Undergraduate (Electronics and Communication Engineering or Computer Science)