Math Problem Statement

solve part b

Solve part (b) of the wave equation problem involving a string attached to a ring of mass m at x = 0 with boundary conditions and assume a solution u(x,t) = e^(-ikx - iωt) + r e^(ikx - iωt).

Solution

To solve part (b), we will start from the given solution for u(x,t)u(x, t) and apply the boundary condition at x=0x = 0.

The solution is given as:

u(x,t)=eikxiωt+reikxiωt.u(x, t) = e^{-ikx - i\omega t} + r e^{ikx - i\omega t}.

The boundary condition is:

m2ut2(0,t)=Tux(0,t).m \frac{\partial^2 u}{\partial t^2}(0, t) = T \frac{\partial u}{\partial x}(0, t).

  1. Step 1: Compute the derivatives

    Compute 2ut2\frac{\partial^2 u}{\partial t^2}:

    ut=iω(eikxiωt+reikxiωt),\frac{\partial u}{\partial t} = -i\omega \left(e^{-ikx - i\omega t} + r e^{ikx - i\omega t}\right),

    2ut2=ω2(eikxiωt+reikxiωt).\frac{\partial^2 u}{\partial t^2} = -\omega^2 \left(e^{-ikx - i\omega t} + r e^{ikx - i\omega t}\right).

    At x=0x = 0:

    2ut2(0,t)=ω2(1+r)eiωt.\frac{\partial^2 u}{\partial t^2}(0, t) = -\omega^2 \left(1 + r\right)e^{-i\omega t}.

    Compute ux\frac{\partial u}{\partial x}:

    ux=ikeikxiωt+rikeikxiωt.\frac{\partial u}{\partial x} = -ik e^{-ikx - i\omega t} + rik e^{ikx - i\omega t}.

    At x=0x = 0:

    ux(0,t)=ik(1r)eiωt.\frac{\partial u}{\partial x}(0, t) = -ik \left(1 - r\right)e^{-i\omega t}.

  2. Step 2: Apply the boundary condition

    Substituting into the boundary condition:

    [ m \cdot \left[-\omega^2 (1 + r)e^{-i\omega t}\right] = T \cdot \left[-ik (1 - r)e^{-i\omega t}\right]. ]

    Simplify by canceling eiωte^{-i\omega t} and the negative sign:

    mω2(1+r)=Tk(1r).m\omega^2 (1 + r) = T k (1 - r).

  3. Step 3: Solve for rr

    Expand and collect terms involving rr:

    mω2+mω2r=TkTkr.m\omega^2 + m\omega^2 r = Tk - Tk r.

    Rearrange:

    r(mω2+Tk)=Tkmω2.r \left(m\omega^2 + Tk\right) = Tk - m\omega^2.

    Solve for rr:

    r=Tkmω2mω2+Tk.r = \frac{Tk - m\omega^2}{m\omega^2 + Tk}.

  4. Step 4: Express kk using v=ωkv = \frac{\omega}{k}

    From v=ωkv = \frac{\omega}{k}, we have k=ωvk = \frac{\omega}{v}. Substituting this into the expression for rr:

    r=Tωvmω2mω2+Tωv.r = \frac{T\frac{\omega}{v} - m\omega^2}{m\omega^2 + T\frac{\omega}{v}}.

    Simplify:

    r=Tωvmω2mω2+Tωv.r = \frac{\frac{T\omega}{v} - m\omega^2}{m\omega^2 + \frac{T\omega}{v}}.

This is the expression for rr.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Wave equation
Boundary conditions
Complex numbers

Formulas

Wave equation: ∂²u/∂t² = v²∂²u/∂x²
Boundary condition: m∂²u/∂t² = T∂u/∂x at x = 0
Assumed solution: u(x, t) = e^(-ikx - iωt) + r e^(ikx - iωt)
Velocity: v = ω/k

Theorems

Superposition principle
Wave propagation and reflection

Suitable Grade Level

Undergraduate Physics or Mathematics