Math Problem Statement

find the volume of the solid region in the first octant bounded by the plane 2x+5y+10z=1- and the coordinate planes using triple integrals

Solution

To find the volume of the solid region in the first octant bounded by the plane 2x+5y+10z=12x + 5y + 10z = 1 and the coordinate planes using triple integrals, we proceed as follows:

Step 1: Solve for bounds

  1. Plane equation intersection with axes:

    • When y=0y = 0 and z=0z = 0: 2x=1    x=122x = 1 \implies x = \frac{1}{2}.
    • When x=0x = 0 and z=0z = 0: 5y=1    y=155y = 1 \implies y = \frac{1}{5}.
    • When x=0x = 0 and y=0y = 0: 10z=1    z=11010z = 1 \implies z = \frac{1}{10}.

    Thus, the triangular base is formed by the intersection of the plane with the coordinate planes.

  2. Plane equation in terms of zz: Solving for zz: z=12x5y10.z = \frac{1 - 2x - 5y}{10}.

  3. Bounds:

    • xx ranges from 00 to 12\frac{1}{2}.
    • For a fixed xx, yy ranges from 00 to 12x5\frac{1 - 2x}{5}.
    • For fixed xx and yy, zz ranges from 00 to 12x5y10\frac{1 - 2x - 5y}{10}.

Step 2: Triple Integral Setup

The volume VV is given by: V=012012x5012x5y101dzdydx.V = \int_0^{\frac{1}{2}} \int_0^{\frac{1 - 2x}{5}} \int_0^{\frac{1 - 2x - 5y}{10}} 1 \, dz \, dy \, dx.

Step 3: Compute the Integral

  1. Inner integral with respect to zz: 012x5y101dz=[z]012x5y10=12x5y10.\int_0^{\frac{1 - 2x - 5y}{10}} 1 \, dz = \left[ z \right]_0^{\frac{1 - 2x - 5y}{10}} = \frac{1 - 2x - 5y}{10}.

    The integral reduces to: V=012012x512x5y10dydx.V = \int_0^{\frac{1}{2}} \int_0^{\frac{1 - 2x}{5}} \frac{1 - 2x - 5y}{10} \, dy \, dx.

  2. Second integral with respect to yy: Expand the numerator: 012x512x5y10dy=110012x5(12x)dy110012x55ydy.\int_0^{\frac{1 - 2x}{5}} \frac{1 - 2x - 5y}{10} \, dy = \frac{1}{10} \int_0^{\frac{1 - 2x}{5}} (1 - 2x) \, dy - \frac{1}{10} \int_0^{\frac{1 - 2x}{5}} 5y \, dy.

    Evaluate each term:

    • For 012x5(12x)dy\int_0^{\frac{1 - 2x}{5}} (1 - 2x) \, dy: (12x)012x51dy=(12x)12x5=(12x)25.(1 - 2x) \int_0^{\frac{1 - 2x}{5}} 1 \, dy = (1 - 2x) \cdot \frac{1 - 2x}{5} = \frac{(1 - 2x)^2}{5}.

    • For 012x55ydy\int_0^{\frac{1 - 2x}{5}} 5y \, dy: 012x55ydy=5y22012x5=5(12x5)22=(12x)210.\int_0^{\frac{1 - 2x}{5}} 5y \, dy = 5 \cdot \frac{y^2}{2} \Big|_0^{\frac{1 - 2x}{5}} = 5 \cdot \frac{\left(\frac{1 - 2x}{5}\right)^2}{2} = \frac{(1 - 2x)^2}{10}.

    Combine the results: 110012x5(12x5y)dy=110((12x)25(12x)210)=110(12x)210=(12x)2100.\frac{1}{10} \int_0^{\frac{1 - 2x}{5}} (1 - 2x - 5y) \, dy = \frac{1}{10} \left( \frac{(1 - 2x)^2}{5} - \frac{(1 - 2x)^2}{10} \right) = \frac{1}{10} \cdot \frac{(1 - 2x)^2}{10} = \frac{(1 - 2x)^2}{100}.

    The integral reduces to: V=012(12x)2100dx.V = \int_0^{\frac{1}{2}} \frac{(1 - 2x)^2}{100} \, dx.

  3. Final integral with respect to xx: Expand (12x)2(1 - 2x)^2: (12x)2=14x+4x2.(1 - 2x)^2 = 1 - 4x + 4x^2.

    Substitute and integrate term by term: 01214x+4x2100dx=1100[x2x2+4x33]012.\int_0^{\frac{1}{2}} \frac{1 - 4x + 4x^2}{100} \, dx = \frac{1}{100} \left[ x - 2x^2 + \frac{4x^3}{3} \right]_0^{\frac{1}{2}}.

    Evaluate at x=12x = \frac{1}{2}: 1100(12214+4318)=1100(1212+16)=110016=1600.\frac{1}{100} \left( \frac{1}{2} - 2 \cdot \frac{1}{4} + \frac{4}{3} \cdot \frac{1}{8} \right) = \frac{1}{100} \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{6} \right) = \frac{1}{100} \cdot \frac{1}{6} = \frac{1}{600}.

Final Answer:

The volume of the solid is: V=1600.V = \frac{1}{600}.


Would you like a detailed explanation for any step?

Related Questions:

  1. How do you determine integration bounds for solids in triple integrals?
  2. What is the geometric interpretation of this problem?
  3. Can you compute the volume using other coordinate systems (like cylindrical)?
  4. How can you verify the result using computational tools?
  5. What are other applications of triple integrals in physics and engineering?

Tip:

Always visualize the solid by sketching or using software to confirm the bounds before setting up triple integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Volume of Solid Region
Plane Equation
First Octant

Formulas

Triple Integral Setup: V = ∫∫∫ 1 dz dy dx
Plane equation: 2x + 5y + 10z = 1
Bounds for z: z = (1 - 2x - 5y) / 10
Bounds for y: y = (1 - 2x) / 5
Bounds for x: x = 0 to 1/2

Theorems

Volume calculation using triple integrals

Suitable Grade Level

Grades 11-12