Math Problem Statement

(1 point) Find the volume of the solid enclosed by the parabolic cylinder 𝑦=𝑥2y=x2 and the planes 𝑧=5+𝑦z=5+y and 𝑧=6𝑦z=6y by subtracting two volumes.

Volume =∫𝑏𝑎∫𝑑𝑐=∫ab∫cd 

functions

equation editor

 𝑑𝑦 𝑑𝑥−∫𝑏𝑎∫𝑑𝑐dy dx−∫ab∫cd 

functions

equation editor

 𝑑𝑦 𝑑𝑥dy dx

where

𝑎=a= 

functions

equation editor

𝑏=b= 

functions

equation editor

𝑐=c= 

functions

equation editor

𝑑=d= 

functions

equation editor

Find the volume.

Volume == 

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Double Integrals
Volume Calculation
Parabolic Cylinders

Formulas

Volume = ∫∫ (f(x, y) - g(x, y)) dy dx
Volume enclosed by two surfaces = ∫∫ (Upper Surface - Lower Surface) dy dx

Theorems

Fubini's Theorem

Suitable Grade Level

University Level - Calculus II or III