Math Problem Statement

(1 point) Find the volume of the solid enclosed by the parabolic cylinder π‘¦=π‘₯2y=x2 and the planes π‘§=5+𝑦z=5+y and π‘§=6𝑦z=6y by subtracting two volumes.

Volume =βˆ«π‘π‘Žβˆ«π‘‘π‘=∫ab∫cd 

functions

equation editor

 π‘‘𝑦 π‘‘π‘₯βˆ’βˆ«π‘π‘Žβˆ«π‘‘π‘dy dxβˆ’βˆ«ab∫cd 

functions

equation editor

 π‘‘𝑦 π‘‘π‘₯dy dx

where

π‘Ž=a= 

functions

equation editor

𝑏=b= 

functions

equation editor

𝑐=c= 

functions

equation editor

𝑑=d= 

functions

equation editor

Find the volume.

Volume == 

Solution

To find the volume of the solid enclosed by the parabolic cylinder y=x2y = x^2 and the planes z=5+yz = 5 + y and z=6yz = 6y, we will set up two integrals for the volumes determined by each plane and then subtract one from the other.

Step-by-Step Solution:

  1. Identify Bounds in the xx- and yy-directions:

    • The parabolic cylinder y=x2y = x^2 suggests that yy ranges from 00 to 11 (based on the overlap of the two planes within this interval).
    • Consequently, xx ranges from βˆ’1-1 to 11 because x2≀1x^2 \leq 1 over the interval of interest.
  2. Set Up the Double Integral for Each Plane:

    • Volume 1 (bounded by z=6yz = 6y): V1=βˆ«βˆ’11∫0x26y dy dxV_1 = \int_{-1}^{1} \int_{0}^{x^2} 6y \, dy \, dx
    • Volume 2 (bounded by z=5+yz = 5 + y): V2=βˆ«βˆ’11∫0x2(5+y) dy dxV_2 = \int_{-1}^{1} \int_{0}^{x^2} (5 + y) \, dy \, dx
  3. Find the Volume by Subtraction: The volume enclosed by the two surfaces will be given by: V=V2βˆ’V1=βˆ«βˆ’11∫0x2((5+y)βˆ’6y) dy dxV = V_2 - V_1 = \int_{-1}^{1} \int_{0}^{x^2} \big((5 + y) - 6y\big) \, dy \, dx Simplify the integrand: V=βˆ«βˆ’11∫0x2(5βˆ’5y) dy dxV = \int_{-1}^{1} \int_{0}^{x^2} (5 - 5y) \, dy \, dx

  4. Evaluate the Inner Integral with Respect to yy: V=βˆ«βˆ’11[5yβˆ’5y22]0x2 dxV = \int_{-1}^{1} \left[ 5y - \frac{5y^2}{2} \right]_{0}^{x^2} \, dx Substitute y=x2y = x^2 into the evaluated expression: V=βˆ«βˆ’11(5x2βˆ’5(x2)22) dxV = \int_{-1}^{1} \left( 5x^2 - \frac{5(x^2)^2}{2} \right) \, dx Simplify further: V=βˆ«βˆ’11(5x2βˆ’5x42) dxV = \int_{-1}^{1} \left( 5x^2 - \frac{5x^4}{2} \right) \, dx

  5. Evaluate the Outer Integral with Respect to xx: Since the integrand is an even function, we can double the integral over [0,1][0, 1]: V=2∫01(5x2βˆ’5x42) dxV = 2 \int_{0}^{1} \left( 5x^2 - \frac{5x^4}{2} \right) \, dx Compute each term separately: V=2(∫015x2 dxβˆ’βˆ«015x42 dx)V = 2 \left( \int_{0}^{1} 5x^2 \, dx - \int_{0}^{1} \frac{5x^4}{2} \, dx \right) Evaluate each integral:

    • ∫015x2 dx=5β‹…x33∣01=53\int_{0}^{1} 5x^2 \, dx = 5 \cdot \frac{x^3}{3} \Big|_{0}^{1} = \frac{5}{3}
    • ∫015x42 dx=52β‹…x55∣01=510=12\int_{0}^{1} \frac{5x^4}{2} \, dx = \frac{5}{2} \cdot \frac{x^5}{5} \Big|_{0}^{1} = \frac{5}{10} = \frac{1}{2}
  6. Combine the Results: V=2(53βˆ’12)=2β‹…10βˆ’36=2β‹…76=73V = 2 \left( \frac{5}{3} - \frac{1}{2} \right) = 2 \cdot \frac{10 - 3}{6} = 2 \cdot \frac{7}{6} = \frac{7}{3}

Final Answer:

Volume=73\text{Volume} = \frac{7}{3}

Would you like more details, or do you have any questions?


  1. How do we identify the bounds for integration with parabolic cylinders?
  2. Why do we set up two separate integrals for this problem?
  3. Can volume calculation be done by a single integral in similar problems?
  4. What makes an integrand function even, and how does that simplify the work?
  5. Why do we need to subtract volumes to find the enclosed region?

Tip: Check symmetry in integrals; it can often simplify calculations significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Double Integrals
Volume Calculation
Parabolic Cylinders

Formulas

Volume = ∫∫ (f(x, y) - g(x, y)) dy dx
Volume enclosed by two surfaces = ∫∫ (Upper Surface - Lower Surface) dy dx

Theorems

Fubini's Theorem

Suitable Grade Level

University Level - Calculus II or III