Math Problem Statement

(1 point) Find the volume of the solid enclosed by the parabolic cylinder π‘¦=π‘₯2y=x2 and the planes π‘§=5+𝑦z=5+y and π‘§=6𝑦z=6y by subtracting two volumes.

Volume =βˆ«π‘π‘Žβˆ«π‘‘π‘=∫ab∫cd 

functions

equation editor

 π‘‘𝑦 π‘‘π‘₯βˆ’βˆ«π‘π‘Žβˆ«π‘‘π‘dy dxβˆ’βˆ«ab∫cd 

functions

equation editor

 π‘‘𝑦 π‘‘π‘₯dy dx

where

π‘Ž=a= 

functions

equation editor

𝑏=b= 

functions

equation editor

𝑐=c= 

functions

equation editor

𝑑=d= 

functions

equation editor

Find the volume.

Volume == 

Solution

To find the volume of the solid enclosed by the parabolic cylinder y=x2y = x^2 and the planes z=5+yz = 5 + y and z=6yz = 6y, we can set up an integral that calculates the volume of the region by subtracting two separate integrals, each representing a different volume.

Step 1: Setting up the volume integral

The volume can be found using the double integral Volume=∫ab∫cd((6y)βˆ’(5+y)) dy dx\text{Volume} = \int_a^b \int_c^d \big((6y) - (5 + y)\big) \, dy \, dx where:

  • 6y6y is the upper bound in the zz-direction,
  • 5+y5 + y is the lower bound in the zz-direction.

Step 2: Determining the bounds

  1. The region is bounded by y=x2y = x^2 in the xyxy-plane.
  2. Since y=x2y = x^2, yy ranges from 00 to 11 (assuming the bounds for yy are determined by the intersection in the context).
  3. Correspondingly, xx would range from βˆ’1-1 to 11.

Thus, we can set:

  • a=βˆ’1a = -1,
  • b=1b = 1,
  • c=0c = 0,
  • d=x2d = x^2.

Step 3: Setting up the integral for the volume

Now the volume integral becomes: Volume=βˆ«βˆ’11∫0x2((6y)βˆ’(5+y)) dy dx.\text{Volume} = \int_{-1}^1 \int_0^{x^2} \big((6y) - (5 + y)\big) \, dy \, dx.

Step 4: Simplify the integrand

The integrand (6yβˆ’(5+y))(6y - (5 + y)) simplifies to: 6yβˆ’5βˆ’y=5yβˆ’5.6y - 5 - y = 5y - 5. Thus, the integral becomes: Volume=βˆ«βˆ’11∫0x2(5yβˆ’5) dy dx.\text{Volume} = \int_{-1}^1 \int_0^{x^2} (5y - 5) \, dy \, dx.

Step 5: Evaluate the inner integral

Now we integrate with respect to yy: ∫0x2(5yβˆ’5) dy=[5y22βˆ’5y]0x2=5(x2)22βˆ’5(x2).\int_0^{x^2} (5y - 5) \, dy = \left[ \frac{5y^2}{2} - 5y \right]_0^{x^2} = \frac{5(x^2)^2}{2} - 5(x^2). Simplifying further, we get: =5x42βˆ’5x2.= \frac{5x^4}{2} - 5x^2.

Step 6: Evaluate the outer integral

Now we integrate with respect to xx: Volume=βˆ«βˆ’11(5x42βˆ’5x2)dx.\text{Volume} = \int_{-1}^1 \left( \frac{5x^4}{2} - 5x^2 \right) dx.

Splitting this into two separate integrals: Volume=βˆ«βˆ’115x42 dxβˆ’βˆ«βˆ’115x2 dx.\text{Volume} = \int_{-1}^1 \frac{5x^4}{2} \, dx - \int_{-1}^1 5x^2 \, dx.

Step 7: Evaluate each integral

  1. First integral: [ \int_{-1}^1 \frac{5x^4}{2} , dx = \frac{5}{2} \int_{-1}^1 x^4 , dx = \frac{5}{2} \cdot \frac{2}{5} = 0.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Volume of Solids
Double Integration

Formulas

Volume = ∫∫ (upper bound - lower bound) dy dx
Integral of polynomials

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

College Level