Math Problem Statement

Determine the volume of a solid under the surface z = 42y² - 12x and above the region R in the xy-plane, where R is defined by 0 ≤ x ≤ 4 and (x-2)² ≤ y ≤ 6.

Solution

To find the volume of the solid under the surface z=42y212xz = 42y^2 - 12x and above the region RR in the xyxy-plane, we set up a double integral over the region RR.

Given the region RR:

  • 0x40 \leq x \leq 4
  • (x2)2y6(x-2)^2 \leq y \leq 6

First, convert (x2)2y(x-2)^2 \leq y to y(x2)2y \geq (x-2)^2.

The volume VV can be expressed as the double integral:

V=R(42y212x)dydxV = \iint_R (42y^2 - 12x) \, dy \, dx

Substitute the limits for integration:

V=04(x2)26(42y212x)dydxV = \int_{0}^{4} \int_{(x-2)^2}^{6} (42y^2 - 12x) \, dy \, dx

Now, solve the inner integral with respect to yy:

(x2)26(42y212x)dy\int_{(x-2)^2}^{6} (42y^2 - 12x) \, dy

Calculate:

=(x2)2642y2dy(x2)2612xdy= \int_{(x-2)^2}^{6} 42y^2 \, dy - \int_{(x-2)^2}^{6} 12x \, dy

Solve each part separately:

  1. 42y2dy=42[y33]=14y3\int 42y^2 \, dy = 42 \left[ \frac{y^3}{3} \right] = 14y^3
  2. 12xdy=12xy\int 12x \, dy = 12xy

Evaluating these from y=(x2)2y = (x-2)^2 to y=6y = 6:

For 14y314y^3:

= 14(216) - 14(x^6 - 6(x^5) + 12(x^4) - 8(x^3))$$ For $$12xy$$: $$= 12x(6) - 12x((x-2)^2) = 72x - 12x(x^2 - 4x + 4) = 72x - 12x^3 + 48x^2 - 48x$$ Simplifying: $$= 14(216) - 14(x^6 - 6x^5 + 12x^4 - 8x^3) - (12x^3 - 48x^2 + 72x - 72x)$$ Simplify and calculate the outer integral for $$x$$ from 0 to 4: $$= \int_{0}^{4} \left( 3024 - 14x^6 + 84x^5 - 168x^4 + 112x^3 \right) \, dx$$ Calculate this to get the final volume by evaluating: $$= [3024x - \frac{14x^7}{7} + \frac{84x^6}{6} - \frac{168x^5}{5} + \frac{112x^4}{4} ]_{0}^{4}$$ Evaluate this expression to obtain the volume.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Double Integration
Volume under a Surface

Formulas

Volume = ∬_R z dA
z = 42y² - 12x
Integration limits: 0 ≤ x ≤ 4, (x-2)² ≤ y ≤ 6

Theorems

Fundamental Theorem of Calculus for Multivariable Functions

Suitable Grade Level

Undergraduate Calculus (College Level)