Math Problem Statement
Solution
The problem shown in the image asks to find the volume of a cone with a radius of 18 feet and a height of 11 feet. The task also requests to provide both the exact value (in terms of π) and an approximation to the nearest hundredth.
The formula for the volume of a cone is:
Where:
- is the radius (18 ft)
- is the height (11 ft)
Step 1: Plug the values into the formula
Step 2: Approximate value
Using :
Final answer:
- Exact value:
- Approximation:
Would you like more details on how these calculations were performed, or do you have any other questions?
Here are 5 related questions you can explore:
- How would the volume change if the height of the cone were doubled?
- What is the surface area of this cone?
- How does the formula for the volume of a cone compare with that of a cylinder?
- What is the effect on volume if both the radius and the height are doubled?
- How would you calculate the slant height of this cone?
Tip: Always use the exact form (in terms of π) when possible, especially for problems requiring precision, to avoid rounding errors.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Volume of Solids
Formulas
V = (1/3)πr^2h
Theorems
Volume of a Cone
Suitable Grade Level
Grades 8-10
Related Recommendation
Find the Volume of a Cone: Diameter 18 ft, Height 17 ft
Calculate the Volume of a Cone with Radius 3 Feet and Height 8 Feet
How to Find the Volume of a Cone with Radius 6 Feet and Height 3 Feet
Calculate the Volume of a Cone with Diameter 12 ft and Height 13 ft
Calculate the Volume of a Cone with Radius 6 m and Height 11 m