Math Problem Statement

Verify the identity.

StartFraction cotangent squared t Over cosecant t EndFraction equals cosecant t minus sine tcot2tcsct=csct−sint

Question content area bottom

Part 1

To verify the​ identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step.

StartFraction cotangent squared t Over cosecant t EndFractioncot2tcsct

equals=

StartFraction cosecant squared t minus 1 Over cosecant t EndFractioncosecant squared t minus 1csc2 t−1csct

Apply a Pythagorean identity.Apply a Pythagorean identity.

Part 2

equals=

enter your response here

▼   Apply a quotient identity.Apply a quotient identity.

Separate the quotient into two terms.Separate the quotient into two terms.

Apply the appropriate even minus odd identity.Apply the appropriate even−odd identity.

Apply a Pythagorean identity.Apply a Pythagorean identity.

​(Do not​ simplify.)

Solution

We aim to verify the identity: cot2tcsct=csctsint\frac{\cot^2 t}{\csc t} = \csc t - \sin t

Part 1: Start with the Left-Hand Side (LHS)

The LHS is: cot2tcsct.\frac{\cot^2 t}{\csc t}.

Step 1: Express cot2t\cot^2 t using a Pythagorean identity.

Using cot2t=csc2t1\cot^2 t = \csc^2 t - 1: cot2tcsct=csc2t1csct.\frac{\cot^2 t}{\csc t} = \frac{\csc^2 t - 1}{\csc t}.


Part 2: Simplify the fraction

Step 2: Separate the fraction into two terms.

csc2t1csct=csc2tcsct1csct.\frac{\csc^2 t - 1}{\csc t} = \frac{\csc^2 t}{\csc t} - \frac{1}{\csc t}.

Simplify each term: csc2tcsct=csct,1csct=sint.\frac{\csc^2 t}{\csc t} = \csc t, \quad \frac{1}{\csc t} = \sin t.

Thus: cot2tcsct=csctsint.\frac{\cot^2 t}{\csc t} = \csc t - \sin t.


Verification Complete

Since the transformed LHS equals the RHS: csctsint=csctsint,\csc t - \sin t = \csc t - \sin t, the identity is verified.


Summary of Steps

  1. Apply the Pythagorean identity: cot2t=csc2t1\cot^2 t = \csc^2 t - 1.
  2. Rewrite the fraction: csc2t1csct\frac{\csc^2 t - 1}{\csc t}.
  3. Separate into two terms: csc2tcsct1csct\frac{\csc^2 t}{\csc t} - \frac{1}{\csc t}.
  4. Simplify to csctsint\csc t - \sin t.

Would you like further clarifications or additional examples? Here are some related questions to consider:


Related Questions:

  1. How do Pythagorean identities relate to trigonometric transformations?
  2. Can you verify similar identities, such as cot2t+1=csc2t\cot^2 t + 1 = \csc^2 t?
  3. What are the reciprocal identities for sint\sin t, cost\cos t, and tant\tan t?
  4. How do you approach verifying identities systematically?
  5. Can you provide additional practice examples for verifying trigonometric identities?

Tip:

Always start with the more complex side when verifying identities to simplify toward the simpler side.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Simplifying Expressions
Pythagorean Identity

Formulas

cot²(t) = csc²(t) - 1
csc(t) = 1/sin(t)

Theorems

Pythagorean Identity
Quotient Identity

Suitable Grade Level

Grades 10-12