Math Problem Statement

erify that the triangle inequality for vectors holds for ⇀u and ⇀v

Solution

The triangle inequality for vectors states that for any two vectors u\vec{u} and v\vec{v}, the following inequality holds:

u+vu+v\| \vec{u} + \vec{v} \| \leq \| \vec{u} \| + \| \vec{v} \|

where u\| \vec{u} \| denotes the magnitude (or length) of the vector u\vec{u}.

To verify this inequality, we will use the properties of vector magnitudes and the Cauchy-Schwarz inequality. Here's a step-by-step approach:

Step 1: Expand u+v2\| \vec{u} + \vec{v} \|^2

We start by squaring both sides of the inequality to make it easier to manipulate. The left side is the square of the magnitude of u+v\vec{u} + \vec{v}:

u+v2=(u+v)(u+v)\| \vec{u} + \vec{v} \|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})

Using the distributive property of the dot product, we get:

u+v2=uu+2uv+vv\| \vec{u} + \vec{v} \|^2 = \vec{u} \cdot \vec{u} + 2 \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}

Since uu=u2\vec{u} \cdot \vec{u} = \| \vec{u} \|^2 and vv=v2\vec{v} \cdot \vec{v} = \| \vec{v} \|^2, we have:

u+v2=u2+2uv+v2\| \vec{u} + \vec{v} \|^2 = \| \vec{u} \|^2 + 2 \vec{u} \cdot \vec{v} + \| \vec{v} \|^2

Step 2: Apply the Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality states that for any two vectors u\vec{u} and v\vec{v},

uvuv|\vec{u} \cdot \vec{v}| \leq \| \vec{u} \| \| \vec{v} \|

Thus, we can bound the middle term in our expanded expression:

2uv2uv2 \vec{u} \cdot \vec{v} \leq 2 \| \vec{u} \| \| \vec{v} \|

Therefore,

u+v2u2+2uv+v2\| \vec{u} + \vec{v} \|^2 \leq \| \vec{u} \|^2 + 2 \| \vec{u} \| \| \vec{v} \| + \| \vec{v} \|^2

Step 3: Recognize the right-hand side as a perfect square

The right-hand side is a perfect square:

u2+2uv+v2=(u+v)2\| \vec{u} \|^2 + 2 \| \vec{u} \| \| \vec{v} \| + \| \vec{v} \|^2 = (\| \vec{u} \| + \| \vec{v} \|)^2

Thus, we have:

u+v2(u+v)2\| \vec{u} + \vec{v} \|^2 \leq (\| \vec{u} \| + \| \vec{v} \|)^2

Step 4: Take square roots

Taking the square root of both sides gives the desired result:

u+vu+v\| \vec{u} + \vec{v} \| \leq \| \vec{u} \| + \| \vec{v} \|

This confirms that the triangle inequality holds for vectors.


Would you like a more detailed explanation or examples of how to apply this? Here are some related questions for further study:

  1. How does the triangle inequality relate to geometric interpretation in Euclidean space?
  2. Can you prove the reverse triangle inequality uvuv\| \vec{u} - \vec{v} \| \geq | \| \vec{u} \| - \| \vec{v} \| |?
  3. How do you use the triangle inequality in vector space norms?
  4. What is the role of the Cauchy-Schwarz inequality in vector spaces?
  5. How does the triangle inequality extend to other types of norms (e.g., Manhattan or Minkowski)?

Tip: The triangle inequality also holds for any norm, not just the Euclidean norm. For example, in the space of continuous functions, it holds for the supremum norm!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Analysis
Triangle Inequality
Dot Product
Cauchy-Schwarz Inequality

Formulas

\| \vec{u} + \vec{v} \| \leq \| \vec{u} \| + \| \vec{v} \|
\| \vec{u} + \vec{v} \|^2 = \vec{u} \cdot \vec{u} + 2 \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}
|\vec{u} \cdot \vec{v}| \leq \| \vec{u} \| \| \vec{v} \|

Theorems

Cauchy-Schwarz Inequality
Triangle Inequality for Vectors

Suitable Grade Level

Grades 11-12