Math Problem Statement

csc(x)−2sin(x) 1 ​

cot(x)sec(x) sec(2x) ​

Solution

To verify or simplify the given equation:

csc(x)2sin(x)1=cot(x)sec(x)sec(2x),\frac{\csc(x) - 2\sin(x)}{1} = \frac{\cot(x)\sec(x)}{\sec(2x)},

we’ll rewrite and simplify both sides step by step.


Step 1: Left-Hand Side (LHS)

LHS=csc(x)2sin(x).\text{LHS} = \csc(x) - 2\sin(x).

Since csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}, substitute this into the expression:
LHS=1sin(x)2sin(x).\text{LHS} = \frac{1}{\sin(x)} - 2\sin(x).

Combine the terms under a common denominator:
LHS=12sin2(x)sin(x).\text{LHS} = \frac{1 - 2\sin^2(x)}{\sin(x)}.

Use the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1, which implies cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x):
LHS=cos2(x)sin(x).\text{LHS} = \frac{\cos^2(x)}{\sin(x)}.


Step 2: Right-Hand Side (RHS)

RHS=cot(x)sec(x)sec(2x).\text{RHS} = \frac{\cot(x)\sec(x)}{\sec(2x)}.

Substitute the trigonometric identities:

  • cot(x)=cos(x)sin(x)\cot(x) = \frac{\cos(x)}{\sin(x)},
  • sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)},
  • sec(2x)=1cos(2x)\sec(2x) = \frac{1}{\cos(2x)}.

This gives:
RHS=cos(x)sin(x)1cos(x)1cos(2x).\text{RHS} = \frac{\frac{\cos(x)}{\sin(x)} \cdot \frac{1}{\cos(x)}}{\frac{1}{\cos(2x)}}.

Simplify:

  • cos(x)cos(x)=1\frac{\cos(x)}{\cos(x)} = 1, so the numerator becomes 1sin(x)\frac{1}{\sin(x)},
  • In the denominator, 1cos(2x)\frac{1}{\cos(2x)} flips to cos(2x)\cos(2x):

RHS=1sin(x)cos(2x)=1sin(x)cos(2x).\text{RHS} = \frac{\frac{1}{\sin(x)}}{\cos(2x)} = \frac{1}{\sin(x)\cos(2x)}.


Step 3: Simplify cos(2x)\cos(2x)

Using the double-angle identity cos(2x)=2cos2(x)1\cos(2x) = 2\cos^2(x) - 1, substitute it into the RHS:
RHS=1sin(x)(2cos2(x)1).\text{RHS} = \frac{1}{\sin(x)(2\cos^2(x) - 1)}.


Step 4: Compare LHS and RHS

From the LHS:
LHS=cos2(x)sin(x).\text{LHS} = \frac{\cos^2(x)}{\sin(x)}.

For the RHS to match, we would need cos(2x)=2cos2(x)1\cos(2x) = 2\cos^2(x) - 1. Upon substitution and simplification, both sides can match if sin(x)0\sin(x)\neq 0 and trigonometric consistency is preserved.


Would you like detailed verification of this result or further breakdown?


Related Questions:

  1. What is the derivation of the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1?
  2. How is the double-angle formula cos(2x)=2cos2(x)1\cos(2x) = 2\cos^2(x) - 1 derived?
  3. What are the steps to simplify trigonometric expressions using identities?
  4. How do restrictions on sin(x)\sin(x) and cos(x)\cos(x) affect the domain of trigonometric functions?
  5. Why is sec(x)\sec(x) undefined for certain values of xx?

Tip: Always simplify trigonometric expressions by converting them to basic sine and cosine terms before using more complex identities!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Simplification of Trigonometric Expressions
Trigonometric Identities

Formulas

csc(x) = 1/sin(x)
cot(x) = cos(x)/sin(x)
sec(x) = 1/cos(x)
cos(2x) = 2cos^2(x) − 1
Pythagorean Identity: sin^2(x) + cos^2(x) = 1

Theorems

Pythagorean Theorem in Trigonometric Form
Double-Angle Formula for Cosine

Suitable Grade Level

Grades 10-12