Math Problem Statement

Виріши задачу яка на фото

Виріши задачу яка на фото

Solution

The problem in the image is about vectors in a parallelogram OABCOABC. The vectors given are:

OA=a,OB=b\overrightarrow{OA} = \vec{a}, \quad \overrightarrow{OB} = \vec{b}

You are asked to express the vectors MO,MA,MB,MC\overrightarrow{MO}, \overrightarrow{MA}, \overrightarrow{MB}, \overrightarrow{MC} in terms of a\vec{a} and b\vec{b}, where MM is the intersection point of the diagonals of the parallelogram.

Approach:

In a parallelogram, the diagonals bisect each other. So, the point MM, being the midpoint of both diagonals, divides each diagonal into two equal parts.

  1. The diagonal ACAC is represented by AC\overrightarrow{AC}. We can express CC using the parallelogram rule, where: OC=OA+OB=a+b\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB} = \vec{a} + \vec{b}

  2. The midpoint MM of the diagonals will have the position vector: OM=12OC=12(a+b)\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OC} = \frac{1}{2} (\vec{a} + \vec{b})

Now, we can express the required vectors:

  1. MO\overrightarrow{MO}: MO=OM=12(a+b)\overrightarrow{MO} = -\overrightarrow{OM} = -\frac{1}{2} (\vec{a} + \vec{b})

  2. MA\overrightarrow{MA}: MA=OAOM=a12(a+b)=12a12b\overrightarrow{MA} = \overrightarrow{OA} - \overrightarrow{OM} = \vec{a} - \frac{1}{2} (\vec{a} + \vec{b}) = \frac{1}{2} \vec{a} - \frac{1}{2} \vec{b}

  3. MB\overrightarrow{MB}: MB=OBOM=b12(a+b)=12b12a\overrightarrow{MB} = \overrightarrow{OB} - \overrightarrow{OM} = \vec{b} - \frac{1}{2} (\vec{a} + \vec{b}) = \frac{1}{2} \vec{b} - \frac{1}{2} \vec{a}

  4. MC\overrightarrow{MC}: MC=OCOM=(a+b)12(a+b)=12(a+b)\overrightarrow{MC} = \overrightarrow{OC} - \overrightarrow{OM} = (\vec{a} + \vec{b}) - \frac{1}{2} (\vec{a} + \vec{b}) = \frac{1}{2} (\vec{a} + \vec{b})

Final Results:

  • MO=12(a+b)\overrightarrow{MO} = -\frac{1}{2} (\vec{a} + \vec{b})
  • MA=12a12b\overrightarrow{MA} = \frac{1}{2} \vec{a} - \frac{1}{2} \vec{b}
  • MB=12b12a\overrightarrow{MB} = \frac{1}{2} \vec{b} - \frac{1}{2} \vec{a}
  • MC=12(a+b)\overrightarrow{MC} = \frac{1}{2} (\vec{a} + \vec{b})

Would you like further details on any specific part?


Related Questions:

  1. How can you prove that diagonals of a parallelogram bisect each other?
  2. What happens if a\vec{a} and b\vec{b} are orthogonal vectors?
  3. How do you find the area of a parallelogram using vectors?
  4. What is the physical interpretation of the vector OM\overrightarrow{OM}?
  5. Can this method be applied to any convex quadrilateral?

Tip: In vector problems involving geometry, identifying relationships like midpoints and bisected diagonals can simplify the calculations considerably.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Geometry

Formulas

Vector addition and subtraction
Midpoint formula in vectors

Theorems

Parallelogram Law for vector addition
Diagonal properties of parallelograms

Suitable Grade Level

University