Math Problem Statement
Найти длины векторов |𝑎 ⃗| и |𝑏 ⃗ ⃗|, скалярное произведение (𝑎 ⃗ , 𝑏 ⃗ ⃗), координаты нормированного вектора 𝑠 ⃗ сонаправленный вектору 𝑎 ⃗ и координаты вектора 𝑐 ⃗, у которого длина вектора равна 4 и противоположен направлен вектору 𝑏 ⃗ ⃗ , если: 𝑎 ⃗ = (3,2, −1), 𝑏 ⃗ ⃗ = (3,4,0).
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Length
Dot Product
Normalized Vector
Vector Opposite Direction
Formulas
|a⃗| = √(a₁² + a₂² + a₃²)
|b⃗⃗| = √(b₁² + b₂² + b₃²)
a⃗ · b⃗⃗ = a₁b₁ + a₂b₂ + a₃b₃
s⃗ = a⃗ / |a⃗|
c⃗ = -b⃗⃗ * (4 / |b⃗⃗|)
Theorems
Properties of Dot Product
Normalization of Vectors
Opposite Direction Vector Scaling
Suitable Grade Level
Grades 10-12
Related Recommendation
Calculating Vector Length with Pythagorean Theorem and Dot Product
Calculating Vector Lengths Using Pythagorean Theorem and Dot Product
Finding Magnitudes, Areas, and Volume of Vectors in 3D
Find the Angle Between Vectors a = <1, 2, -1> and b = <2, 1, -2>
Dot Product of Vectors a = (2, -3, -7) and b = (1, -1, 2)