Math Problem Statement

Find the lengths of vectors |a

⃗|, |b

⃗ ⃗| and |c

⃗|, area

Parallelogram built on vectors a

And b

⃗⃗

,

The area of a parallelogram built on vectors b

⃗⃗

And c

, the area of the parallelogram built on

Vectors a

And c

, the volume of a parallelepiped built on

Vectors a

, b

⃗⃗

And with

, if:

A

= (x, 2,2), b

⃗⃗

= (4,

−1, 5), c

= (3, y,

−2),

(A

, b

⃗ ⃗) = 20, (b

⃗⃗

, c

⃗) = −3.

Answer: |a

⃗| = √17, |b

⃗⃗|=√42,|c

⃗| = √38,

S|[a

⃗⃗

,B

⃗ ⃗]|= √314, S|[b

⃗⃗

,C

⃗]|= √1587 = 23√3,

S|[a

⃗⃗

,C

⃗]| = √421, V |(a

⃗⃗

,B

⃗⃗

,C

⃗)|= 23 Show all calcurations.

Solution

To solve this problem, we will need to:

  1. Find the lengths a| \vec{a} |, b| \vec{b} |, and c| \vec{c} |.
  2. Calculate the areas of the parallelograms formed by pairs of vectors a\vec{a} and b\vec{b}, b\vec{b} and c\vec{c}, and a\vec{a} and c\vec{c}.
  3. Compute the volume of the parallelepiped formed by vectors a\vec{a}, b\vec{b}, and c\vec{c}.

We are given: a=(x,2,2),b=(4,1,5),c=(3,y,2),\vec{a} = (x, 2, 2), \quad \vec{b} = (4, -1, 5), \quad \vec{c} = (3, y, -2), (a,b)=20,(b,c)=3.(\vec{a}, \vec{b}) = 20, \quad (\vec{b}, \vec{c}) = -3.

Step 1: Find the lengths of a\vec{a}, b\vec{b}, and c\vec{c}

The length (magnitude) of a vector v=(v1,v2,v3)\vec{v} = (v_1, v_2, v_3) is given by: v=v12+v22+v32.|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.

  1. Finding a| \vec{a} |: a=x2+22+22=x2+4+4=x2+8.|\vec{a}| = \sqrt{x^2 + 2^2 + 2^2} = \sqrt{x^2 + 4 + 4} = \sqrt{x^2 + 8}.

  2. Finding b| \vec{b} |: b=42+(1)2+52=16+1+25=42.|\vec{b}| = \sqrt{4^2 + (-1)^2 + 5^2} = \sqrt{16 + 1 + 25} = \sqrt{42}.

  3. Finding c| \vec{c} |: c=32+y2+(2)2=9+y2+4=y2+13.|\vec{c}| = \sqrt{3^2 + y^2 + (-2)^2} = \sqrt{9 + y^2 + 4} = \sqrt{y^2 + 13}.

Step 2: Calculate the dot products to find xx and yy

The dot product of two vectors ab=a1b1+a2b2+a3b3\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.

  1. Dot product ab=20\vec{a} \cdot \vec{b} = 20: ab=x4+2(1)+25=4x2+10=4x+8.\vec{a} \cdot \vec{b} = x \cdot 4 + 2 \cdot (-1) + 2 \cdot 5 = 4x - 2 + 10 = 4x + 8. Setting this equal to 20: 4x+8=204x=12x=3.4x + 8 = 20 \Rightarrow 4x = 12 \Rightarrow x = 3.

  2. Dot product bc=3\vec{b} \cdot \vec{c} = -3: bc=43+(1)y+5(2)=12y10=2y.\vec{b} \cdot \vec{c} = 4 \cdot 3 + (-1) \cdot y + 5 \cdot (-2) = 12 - y - 10 = 2 - y. Setting this equal to -3: 2y=3y=5.2 - y = -3 \Rightarrow y = 5.

With x=3x = 3 and y=5y = 5, we can now find the magnitudes:

  1. Final magnitude of a\vec{a}: a=32+22+22=9+4+4=17.|\vec{a}| = \sqrt{3^2 + 2^2 + 2^2} = \sqrt{9 + 4 + 4} = \sqrt{17}.

  2. Magnitude of b\vec{b}: b=42.|\vec{b}| = \sqrt{42}.

  3. Final magnitude of c\vec{c}: c=32+52+(2)2=9+25+4=38.|\vec{c}| = \sqrt{3^2 + 5^2 + (-2)^2} = \sqrt{9 + 25 + 4} = \sqrt{38}.

Step 3: Calculate areas of the parallelograms

The area of a parallelogram formed by two vectors u\vec{u} and v\vec{v} is given by u×v|\vec{u} \times \vec{v}|.

  1. Area of parallelogram formed by a\vec{a} and b\vec{b}: [ \vec{a} \times \vec{b} = \begin{vmatrix} \hat

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Magnitude
Dot Product
Cross Product
Parallelogram Area
Parallelepiped Volume

Formulas

|v| = √(v₁² + v₂² + v₃²)
a⃗ · b⃗ = a₁b₁ + a₂b₂ + a₃b₃
|a⃗ × b⃗| = Area of Parallelogram
Volume of Parallelepiped = |a⃗ · (b⃗ × c⃗)|

Theorems

Pythagorean Theorem
Properties of Dot and Cross Products

Suitable Grade Level

Grades 11-12